. 24/7 Space News .
CHIP TECH
Spin current detection in quantum materials unlocks potential for alternative electronics
by Staff Writers
Oak Ridge TN (SPX) Oct 18, 2017


A new microscopy method developed by an ORNL-led team has four movable probing tips, is sensitive to the spin of moving electrons and produces high-resolution results. Using this approach, they observed the spin behavior of electrons on the surface of a quantum material.

A new method that precisely measures the mysterious behavior and magnetic properties of electrons flowing across the surface of quantum materials could open a path to next-generation electronics.

Found at the heart of electronic devices, silicon-based semiconductors rely on the controlled electrical current responsible for powering electronics. These semiconductors can only access the electrons' charge for energy, but electrons do more than carry a charge. They also have intrinsic angular momentum known as spin, which is a feature of quantum materials that, while elusive, can be manipulated to enhance electronic devices.

A team of scientists, led by An-Ping Li at the Department of Energy's Oak Ridge National Laboratory, has developed an innovative microscopy technique to detect the spin of electrons in topological insulators, a new kind of quantum material that could be used in applications such as spintronics and quantum computing.

"The spin current, namely the total angular momentum of moving electrons, is a behavior in topological insulators that could not be accounted for until a spin-sensitive method was developed," Li said.

Electronic devices continue to evolve rapidly and require more power packed into smaller components. This prompts the need for less costly, energy-efficient alternatives to charge-based electronics. A topological insulator carries electrical current along its surface, while deeper within the bulk material, it acts as an insulator. Electrons flowing across the material's surface exhibit uniform spin directions, unlike in a semiconductor where electrons spin in varying directions.

"Charge-based devices are less energy efficient than spin-based ones," said Li. "For spins to be useful, we need to control both their flow and orientation."

To detect and better understand this quirky particle behavior, the team needed a method sensitive to the spin of moving electrons. Their new microscopy approach was tested on a single crystal of Bi2Te2Se, a material containing bismuth, tellurium and selenium. It measured how much voltage was produced along the material's surface as the flow of electrons moved between specific points while sensing the voltage for each electron's spin.

The new method builds on a four-probe scanning tunneling microscope - an instrument that can pinpoint a material's atomic activity with four movable probing tips - by adding a component to observe the spin behavior of electrons on the material's surface. This approach not only includes spin sensitivity measurements. It also confines the current to a small area on the surface, which helps to keep electrons from escaping beneath the surface, providing high-resolution results.

"We successfully detected a voltage generated by the electron's spin current," said Li, who coauthored a paper published by Physical Review Letters that explains the method. "This work provides clear evidence of the spin current in topological insulators and opens a new avenue to study other quantum materials that could ultimately be applied in next-generation electronic devices."

Research Report: "Detection of the Spin-Chemical Potential in Topological Insulators Using Spin-Polarized Four-Probe STM"

CHIP TECH
Newly-discovered semiconductor dynamics may help improve energy efficiency
Chicago IL (SPX) Oct 10, 2017
Researchers examining the flow of electricity through semiconductors have uncovered another reason these materials seem to lose their ability to carry a charge as they become more densely "doped." Their results, which may help engineers design faster semiconductors in the future, are published online in the journal ACS Nano. Semiconductors are found in just about every piece of modern elec ... read more

Related Links
Oak Ridge National Laboratory
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Plants and psychological well-being in space

Russia's space agency says glitch in manned Soyuz landing

Spacewalkers fix robotic arm in time to grab next cargo ship

NASA develops and tests new housing for in-orbit science payloads

CHIP TECH
It's a success! Blue Origin conducts first hot-fire test of BE-4 engine

NASA awards launch contracts for Landsat 9 and Sentinel-6A

ESA role in Europe's first all-electric telecom satellite

Lockheed Martin Launches Second Cycle of 'Girls' Rocketry Challenge' in Japan

CHIP TECH
MAVEN finds Mars has a twisted tail

Solar eruptions could electrify Martian moons

A mission to Mars could make its own oxygen thanks to plasma technology

Mine craft for Mars

CHIP TECH
Space will see Communist loyalty: Chinese astronaut

China launches three satellites

Mars probe to carry 13 types of payload on 2020 mission

UN official commends China's role in space cooperation

CHIP TECH
Myanmar to launch own satellite system-2 in 2019: vice president

Eutelsat's Airbus-built full electric EUTELSAT 172B satellite reaches geostationary orbit

Turkey, Russia to Enhance Cooperation in the Field of Space Technologies

SpaceX launches 10 satellites for Iridium mobile network

CHIP TECH
These headsets are made for walking over Mars

Understanding rare earth emulsions

Chemical treatment improves quantum dot lasers

Two-dimensional materials gets a new theory for control of properties

CHIP TECH
New NASA study improves search for habitable worlds

From Comets Come Planets

A star that devoured its own planets

Astronomers find potential solution into how planets form

CHIP TECH
Haumea, the most peculiar of Pluto companions, has a ring around it

Ring around a dwarf planet detected

Helicopter test for Jupiter icy moons radar

Solving the Mystery of Pluto's Giant Blades of Ice









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.