. 24/7 Space News .
TECH SPACE
Spectral cloaking could make objects invisible under realistic conditions
by Staff Writers
Washington DC (SPX) Jul 06, 2018

A broadband wave illuminates an object, which reflects green light in the shown example, making the object detectable by an observer monitoring the wave. A spectral invisibility cloak transforms the blocked color (green) into other colors of the wave's spectrum. The wave propagates unaltered through the object, without 'seeing its color' and the cloak subsequently reverses the previous transformation, making the object invisible to the observer.

Researchers and engineers have long sought ways to conceal objects by manipulating how light interacts with them. A new study offers the first demonstration of invisibility cloaking based on the manipulation of the frequency (color) of light waves as they pass through an object, a fundamentally new approach that overcomes critical shortcomings of existing cloaking technologies.

The approach could be applicable to securing data transmitted over fiber optic lines and also help improve technologies for sensing, telecommunications and information processing, researchers say. The concept, theoretically, could be extended to make 3D objects invisible from all directions; a significant step in the development of practical invisibility cloaking technologies.

Most current cloaking devices can fully conceal the object of interest only when the object is illuminated with just one color of light. However, sunlight and most other light sources are broadband, meaning that they contain many colors. The new device, called a spectral invisibility cloak, is designed to completely hide arbitrary objects under broadband illumination.

The spectral cloak operates by selectively transferring energy from certain colors of the light wave to other colors. After the wave has passed through the object, the device restores the light to its original state. Researchers demonstrate the new approach in Optica, The Optical Society's journal for high impact research.

"Our work represents a breakthrough in the quest for invisibility cloaking," said Jose Azana, National Institute of Scientific Research (INRS), Montreal, Canada. "We have made a target object fully invisible to observation under realistic broadband illumination by propagating the illumination wave through the object with no detectable distortion, exactly as if the object and cloak were not present."

Overcoming previous hurdles
When viewing an object, what you are really seeing is the way in which the object modifies the energy of the light waves that interact with it. Most solutions for invisibility cloaking involve altering the paths that light follows so that waves propagate around, rather than through, an object. Other approaches, called "temporal cloaking," tamper with the propagation speed of the light such that the object is temporarily concealed as it passes through the light beam during a prescribed length of time.

In either approach, different colors of an incoming light wave must follow different paths as they travel through the cloaking device, thus taking different amounts of time to reach their destination. This alteration of the wave's temporal profile can make it apparent to observers that something is not as it should be.

"Conventional cloaking solutions rely on altering the propagation path of the illumination around the object to be concealed; this way, different colors take different amounts of time to traverse the cloak, resulting in easily detectable distortion that gives away the presence of the cloak," said Luis Romero Cortes, National Institute of Scientific Research (INRS). "Our proposed solution avoids this problem by allowing the wave to propagate through the target object, rather than around it, while still avoiding any interaction between the wave and the object."

Rearranging colors
Azana and his team accomplished this by developing a method to rearrange different colors of broadband light so that the light wave propagates through the object without actually "seeing" it.

To do this, the cloaking device first shifts the colors toward regions of the spectrum that will not be affected by propagation through the object. For example, if the object reflects green light, then light in the green portion of the spectrum might be shifted to blue so that there would be no green light for it to reflect. Then, once the wave has cleared the object, the cloaking device reverses the shift, reconstructing the wave in its original state.

The team demonstrated their approach by concealing an optical filter, which is a device that absorbs light in a prescribed set of colors while allowing other colors of light to pass through, that they illuminated with a short pulse of laser light.

The cloaking device was constructed from two pairs of two commercially available electro-optical components. The first component is a dispersive optical fiber, which forces the different colors of a broadband wave to travel at different speeds. The second is a temporal phase modulator, which modifies the optical frequency of light depending on when the wave passes through the device. One pair of these components was placed in front of the optical filter while the other pair was placed behind it.

The experiment confirmed that the device was able to transform the light waves in the range of frequencies that would have been absorbed by the optical filter, then completely reverse the process as the light wave exited the filter on the other side, making it look as though the laser pulse had propagated through a non-absorbing medium.

Putting cloaking to use
While the new design would need further development before it could be translated into a Harry Potter-style, wearable invisibility cloak, the demonstrated spectral cloaking device could be useful for a range of security goals.

For example, current telecommunication systems use broadband waves as data signals to transfer and process information. Spectral cloaking could be used to selectively determine which operations are applied to a light wave and which are "made invisible" to it over certain periods of time. This could prevent an eavesdropper from gathering information by probing a fiber optic network with broadband light.

The overall concept of reversible, user-defined spectral energy redistribution could also find applications beyond invisibility cloaking. For example, selectively removing and subsequently reinstating colors in the broadband waves that are used as telecommunication data signals could allow more data to be transmitted over a given link, helping to alleviate logjams as data demands continue to grow. Or, the technique could be used to minimize some key problems in today's broadband telecommunication links, for example by reorganizing the signal energy spectrum to make it less vulnerable to dispersion, nonlinear phenomena and other undesired effects that impair data signals.

While the researchers demonstrated spectral cloaking when the object was illuminated from only one spatial direction, Azana said it should be possible to extend the concept to make an object invisible under illumination from every direction. The team plans to continue their research toward this goal. In the meantime, the team is also working to advance practical applications for single-direction spectral cloaking in one-dimensional wave systems, such as for fiber optics based applications.

Research Report: "Full-field broadband invisibility through reversible wave frequency-spectrum control,"

Related Links
The Optical Society
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
Scientists calculate impact of China's ban on plastic waste imports
Athens GA (SPX) Jul 06, 2018
While recycling is often touted as the solution to the large-scale production of plastic waste, upwards of half of the plastic waste intended for recycling is exported from higher income countries to other nations, with China historically taking the largest share. But in 2017, China passed the "National Sword" policy, which permanently bans the import of non-industrial plastic waste as of January 2018. Now, scientists from the University of Georgia have calculated the potential global impact of th ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Orion Jettison Motor Ready for Crew Escape System Test

Testing Refines Requirements for Deep Space Habitat Design

Making oxygen from water may pave way for long-distance space travel

NASA and Peanuts Worldwide to Collaborate on Deep Space Learning Activities

TECH SPACE
Experimental Spaceplane Program Successfully Completes Engine Test Series

Aurora Launch Services established in Alaska To provide responsive launch services

Largest-ever solid rocket motor poised for first hot firing

Chinese Space Company Planning Launch of Largest Privately Owned Liquid Rocket

TECH SPACE
Scientists Discover "Ghost Dunes" On Mars

UK space sector set to benefit from new European Space Agency contract

Airbus wins two ESA studies for Mars Sample Return mission

NASA listens out for Opportunity everyday

TECH SPACE
China readying for space station era: Yang Liwei

China launches new space science program

China Rising as Major Space Power

China launches new-tech experiment twin satellites

TECH SPACE
EIB and ESA to cooperate on increasing investments in the European Space Sector

China Mulls Creation of Joint Global Satellite System with Russia

Laser-Based System is Set to Expand Space-to-Ground Communication

Yes we've got a space agency - but our industry needs 'Space Prize Australia'

TECH SPACE
Astronomer Reveals When Soviet-Era Interplanetary Station Will Crash to Earth

Giant Satellite Fuel Tank Sets New Record for 3-D Printed Space Parts

New insights bolster Einstein's idea about how heat moves through solids

Spectral cloaking could make objects invisible under realistic conditions

TECH SPACE
NASA's Webb Space Telescope to Inspect Atmospheres of Gas Giant Exoplanets

TESS Spacecraft Continues Testing Prior to First Observations

NASA's Kepler Spacecraft Pauses Science Observations to Download Science Data

Rocky planet neighbor looks familiar, but is not Earth's twin

TECH SPACE
First Global Maps of Pluto and Charon from New Horizons Published

Europa's Ocean Ascending

Jupiter's moons create uniquely patterned aurora on the gas giant planet

'Cataclysmic' collision shaped Uranus' evolution









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.