Subscribe free to our newsletters via your
. 24/7 Space News .

Software Enables Efficient Planning of MESSENGER Observations
by Staff Writers
Baltimore MD (SPX) Feb 07, 2012

File image.

SciBox has proven critical to the success of the MESSENGER mission to Mercury. With completion of the design of all primary-mission observations - including more than 70,000 images and millions of spectral observations - the SciBox software tool has substantially increased, relative to original expectations, the scientific return from the first year of Mercury orbital observations.

The spacecraft team is now adapting the system to develop the best plan for MESSENGER's extended mission, which begins next month.

Software engineers at the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Md., designed SciBox for the simulation and planning of mission scientific operations and for the generation of spacecraft and instrument commands.

"It is a flexible, adjustable suite of mission-simulation and command-generation tools that models spacecraft performance with high fidelity," explains APL's Teck Choo, the creator and architect of SciBox.

SciBox developers worked with the scientists responsible for MESSENGER's investigations to insert the requirements for all scientific observations into the software's decision routines.

During a planning run, SciBox examines the entire mission, locating the best opportunity for each scientific observation. Then, using a set of intertwined priorities constructed to minimize interference among observations, SciBox schedules the full set of observations for the entire mission.

Once the science and engineering teams verify the plan, SciBox produces the instrument commands, which are combined with telecommunication and power commands and then converted to binary format for transmission to the spacecraft. Because spacecraft pointing is integral to the observation plan, SciBox also plans attitude control maneuvers and produces those commands.

The SciBox planning system has increased the scientific return from MESSENGER in several ways. First, it has reduced the complexity involved in combining the more than 30 different sets of observations from the seven instruments and radio science.

"By hand, this intractable problem-to find a fully integrated schedule that accommodates all observations - would be nearly impossible to solve," states Mark Perry, the science lead for SciBox development. "With SciBox, the scientists can levy any and all types of requirements and constraints on the observations, no matter how intricate, and the SciBox implementation team can create an observing sequence to satisfy them."

SciBox also helped the team evaluate options. "With SciBox, scientists and planners can modify the observational parameters and evaluate the effect on the entire mission schedule," Perry says.

"Part of SciBox's output is an extensive set of reports that includes detailed lists, summary statistics, and hundreds of plots that facilitate evaluation of improvements and modifications. With that valuable information, MESSENGER scientists can conduct trades to identify the best approach."

SciBox can also respond quickly to changes in the mission or requirements. "SciBox can re-plan an entire mission in three hours, including the re-integration of all observations, the generation of commands, and the completion of reports," says Choo.

"If the orbit is slightly different from that expected, or if an instrument's optimal observing parameters change during the course of the mission, then we modify SciBox and re-run it."

These same SciBox features have also reduced the risks involved in achieving overall mission objectives. "By planning all the mission observations at once, scientists need not estimate the long-range effects of their requirements," Perry says. Many of the observing variables are run-time parameters, enabling trade studies without modifying the SciBox code, he explains.

With SciBox, planners can also easily investigate the effects of problems and then modify SciBox to develop a plan that is less sensitive to such problems. This rapid response capability minimizes the effect of mission changes by quick re-planning of the full mission.

The SciBox tool continues to evolve. Indeed, one of its advantages is the ease with which it accommodates changes. During MESSENGER's yearlong primary mission, as the science team has identified new observing opportunities, capability has been added to generate new and improved observations.

For the extended mission, the team developed a version of SciBox that incorporates all of the extended-mission observing requirements defined by MESSENGER's science team. The SciBox developers examined strategies for accomplishing the new observations and then worked with the scientists to resolve conflicts and ensure that all requirements are met.

The result, endorsed by the science team and scheduled to go into effect in March, is a packed plan that achieves a scientific return that exceeds extended mission requirements.


Related Links
News Flash at Mercury
Mars News and Information at
Lunar Dreams and more

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Scientists eye Mercury magnetic puzzle
Katlenburg-Lindau, Germany (UPI) Dec 23, 2011
Mercury, the smallest planet and the closest to the sun, has an unexpectedly weak magnetic field, and European researchers have fingered the sun as the culprit. Planetary magnetic fields are generated by flows in the hot, liquid iron cores of rocky planets. Based on its size and density, Mercury should field strengths similar to those on Earth - yet the planet's field is 150 times weak ... read more

Manned Moon Shot Possible by 2020

NASA Mission Returns First Video From Lunar Far Side

A Moon Colony by 2020

U.S. Presidential Hopeful Promises Moon Base by 2020

Surface of Mars an unlikely place for life after 600 million year drought

Heavy Ions Killed Mars Probe

Russia May Run Repeat Mission to Phobos

U.K. study: Mars surface too dry for life

Precision space maneuvers

How Do You Fight Fire in Space?

NASA Receives Final NRC Report On Space Technology Roadmaps

Final Call to Register and Win Suborbital Research Flight

China announces new launch rockets

China's satellite navigation sector annual output predicted to reach 35 bln USD in 2015

China plans to launch 21 rockets, 30 satellites this year

Shenzhou 9 Behind the Curtain

Next manned ISS mission to launch May 15: Russia

Capsule failure delays ISS crew mission

Russia to postpone next manned space launch: official

Russia will replace Soyuz for next ISS mission: source

SpaceX flight to ISS could be late March: NASA

Feb 13 set as new date for Europe's Vega rocket

Launch of Proton-M with Dutch Satellite Postponed

First Vega rocket assembled on launch pad

Elements of ExoPlanets

New super-Earth detected within the habitable zone of a nearby star

Russia to Start Own Search for Extrasolar Planets

Planets Circling Around Twin Suns

3D printer creates new jaw for woman

Phobos Crash Test Dismisses U.S. Link

iPhone leaps to third place in mobile market

Apple's iPhone hot but Android handsets on fire

The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement