Subscribe free to our newsletters via your
. 24/7 Space News .




ENERGY TECH
Small in size, big on power: New microbatteries a boost for electronics
Liz Ahlberg, Physical Sciences Editor
Champaign IL (SPX) Apr 17, 2013


The graphic illustrates a high power battery technology from the University of Illinois. Ions flow between three-dimensional micro-electrodes in a lithium ion battery. Image courtesy of the Beckman Institute for Advanced Science and Technology.

Though they be but little, they are fierce. The most powerful batteries on the planet are only a few millimeters in size, yet they pack such a punch that a driver could use a cellphone powered by these batteries to jump-start a dead car battery - and then recharge the phone in the blink of an eye.

Developed by researchers at the University of Illinois at Urbana-Champaign, the new microbatteries out-power even the best supercapacitors and could drive new applications in radio communications and compact electronics.

"This is a whole new way to think about batteries," King said. "A battery can deliver far more power than anybody ever thought. In recent decades, electronics have gotten small. The thinking parts of computers have gotten small. And the battery has lagged far behind. This is a microtechnology that could change all of that. Now the power source is as high-performance as the rest of it."

With currently available power sources, users have had to choose between power and energy. For applications that need a lot of power, like broadcasting a radio signal over a long distance, capacitors can release energy very quickly but can only store a small amount. For applications that need a lot of energy, like playing a radio for a long time, fuel cells and batteries can hold a lot of energy but release it or recharge slowly.

"There's a sacrifice," said James Pikul, a graduate student and first author of the paper. "If you want high energy you can't get high power; if you want high power it's very difficult to get high energy.

"But for very interesting applications, especially modern applications, you really need both. That's what our batteries are starting to do. We're really pushing into an area in the energy storage design space that is not currently available with technologies today."

The new microbatteries offer both power and energy, and by tweaking the structure a bit, the researchers can tune them over a wide range on the power-versus-energy scale.

The batteries owe their high performance to their internal three-dimensional microstructure. Batteries have two key components: the anode (minus side) and cathode (plus side). Building on a novel fast-charging cathode design by materials science and engineering professor Paul Braun's group, King and Pikul developed a matching anode and then developed a new way to integrate the two components at the microscale to make a complete battery with superior performance.

With so much power, the batteries could enable sensors or radio signals that broadcast 30 times farther, or devices 30 times smaller. The batteries are rechargeable and can charge 1,000 times faster than competing technologies - imagine juicing up a credit-card-thin phone in less than a second. In addition to consumer electronics, medical devices, lasers, sensors and other applications could see leaps forward in technology with such power sources available.

"Any kind of electronic device is limited by the size of the battery - until now," King said. "Consider personal medical devices and implants, where the battery is an enormous brick, and it's connected to itty-bitty electronics and tiny wires. Now the battery is also tiny."

Now, the researchers are working on integrating their batteries with other electronics components, as well as manufacturability at low cost.

"Now we can think outside of the box," Pikul said. "It's a new enabling technology. It's not a progressive improvement over previous technologies; it breaks the normal paradigms of energy sources. It's allowing us to do different, new things."

Led by William P. King, the Bliss Professor of mechanical science and engineering, the researchers published their results in the April 16 issue of Nature Communications.

The National Science Foundation and the Air Force Office of Scientific Research supported this work. King also is affiliated with the Beckman Institute for Advanced Science and Technology; the Frederick Seitz Materials Research Laboratory; the Micro and Nanotechnology Laboratory; and the department of electrical and computer engineering at the U. of I.

The paper, "High Power Lithium Ion Micro Batteries From Interdigitated Three-Dimensional Bicontinuous Nanoporous Electrodes," is available online.

.


Related Links
University of Illinois
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
Better batteries from waste sulfur
Tucson AZ (SPX) Apr 16, 2013
A new chemical process can transform waste sulfur into a lightweight plastic that may improve batteries for electric cars, reports a University of Arizona-led team. The new plastic has other potential uses, including optical uses. The team has successfully used the new plastic to make lithium-sulfur batteries. "We've developed a new, simple and useful chemical process to convert sulfur int ... read more


ENERGY TECH
Characterizing The Lunar Radiation Environment

Russia rekindles Moon exploration program, intends setting up first human outposts there

Pre-existing mineralogy may survive lunar impacts

Lunar cycle determines hunting behaviour of nocturnal gulls

ENERGY TECH
Accurate pointing by Curiosity

NASA Mars Orbiter Images May Show 1971 Soviet Lander

Opportunity is in position for solar conjunction at 'Cape York' on the rim of Endeavour Crater

NASA spacecraft may have spotted pieces of Soviet spacecraft on Mars

ENERGY TECH
Testing Spacesuits in Antarctica, part 1

Obama's budget would boost science, health

Underwater for outer space

NASA Celebrates Four Decades of Plucky Pioneer 11

ENERGY TECH
Shenzhou's Shadow Crew

Shenzhou 10 sent to launch site

China's Next Women Astronauts

Shenzhou 10 - Next Stop: Jiuquan

ENERGY TECH
UH Engineering Researcher's Theories to be Tested Aboard ISS

Unmanned Russian space freighter leaves space station toward fiery end

Europe sets June 5 for launch of space freighter

Spooky action at a distance aboard the ISS

ENERGY TECH
ILS Proton Launches Anik G1 for Telesat

Ukraine aims to accelerate space industry development

Payload integration is underway for Vega's second mission from the Spaceport

Ecuador to launch first homemade satellite

ENERGY TECH
Can One Buy the Right to Name a Planet?

Retired Star Found With Planets And Debris Disc

The Great Exoplanet Debate

NASA Selects Explorer Investigations for Formulation

ENERGY TECH
For the very first time, two spacecraft will fly in formation with millimeter precision

High pressure gold nanocrystal structure revealed

Scientists design new adaptive material inspired by tears

UC Research Demonstrates Why Going Green Is Good Chemistry




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement