. 24/7 Space News .
TIME AND SPACE
Simulations foresee hordes of colliding black holes and gravitational waves
by Staff Writers
Chicago IL (SPX) Jun 29, 2016


New research predicts that LIGO will detect gravitational waves generated by many more merging black holes in coming years. Image courtesy of LIGO/A.

New calculations predict that the Laser Interferometer Gravitational wave Observatory (LIGO) will detect approximately 1,000 mergers of massive black holes annually once it achieves full sensitivity early next decade.

The prediction, published online in the journal Nature, is based on computer simulations of more than a billion evolving binary stars. The simulations are based on state-of-the-art modeling of the physics involved, informed by the most recent astronomical and astrophysical observations.

"The main thing we find is that what LIGO detected makes sense," said Daniel Holz, assistant professor in physics and astronomy at the University of Chicago and a co-author of the Nature paper. The simulations predict the formation of black-hole binary stars in a range of masses that includes the two already observed. As more LIGO data become available, Holz and his colleagues will be able to test their results more rigorously.

The paper's lead author, Krzysztof Belczynski of Warsaw University in Poland, said he hopes the results will surprise him, that they will expose flaws in the work. Their calculations show, for example, that once LIGO reaches full sensitivity, it will detect only one pair of colliding neutron stars for every 1,000 detections of the far more massive black-hole collisions.

"Actually, I would love to be proven wrong on this issue. Then we will learn a lot," Belczynski said.

Forming Big Black Holes
The new Nature paper, which includes co-authors Tomasz Bulik of Warsaw University and Richard O'Shaughnessy of the Rochester Institute of Technology, describes the most likely black-hole formation scenario that generated the first LIGO gravitational-wave detection in September 2015. That detection confirmed a major prediction of Albert Einstein's 1915 general theory of relativity.

The paper is the most recent in a series of publications, topping a decade of analyses where Holz, Belczynski and their associates theorize that the universe has produced many black-hole binaries in the mass range that are close enough to Earth for LIGO to detect.

"Here we simulate binary stars, how they evolve, turn into black holes, and eventually get close enough to crash into each other and make gravitational waves that we would observe," Holz said.

The simulations show that the formation and evolution of a typical system of binary stars results in a merger of similar masses, and after similarly elapsed times, to the event that LIGO detected last September. These black hole mergers have masses ranging from 20 to 80 times more than the Sun.

LIGO will begin recording more gravitational-wave-generating events as the system becomes more sensitive and operates for longer periods of time. LIGO will go through successive upgrades over the coming years, and is expected to reach its design sensitivity by 2020. By then, the Nature study predicts that LIGO might be detecting more than 100 black hole collisions annually.

LIGO has detected big black holes and big collisions, with a combined mass greater than 30 times that of the Sun. These can only be formed out of big stars.

"To make those you need to have low metallicity stars, which just means that these stars have to be relatively pristine," Holz said. The Big Bang produced mainly hydrogen and helium, which eventually collapsed into stars.

Forging Metals
As these stars burned they forged heavier elements, which astronomers call "metals." Those stars with fewer metals lose less mass as they burn, resulting in the formation of more massive black holes when they die. That most likely happened approximately two billion years after the Big Bang, before the young universe had time to form significant quantities of heavy metals. Most of those black holes would have merged relatively quickly after their formation.

LIGO would be unable to detect the ones that merged early and quickly. But if the binaries were formed in large enough numbers, a small fraction would survive for longer periods and would end up merging 11 billion years after the Big Bang (2.8 billion years ago), recently enough for LIGO to detect.

"That's in fact what we think happened," Holz said. Statistically speaking, "it's the most likely scenario." He added, however, that the universe continues to produce binary stars in local, still pristine pockets of low metallicity that resemble conditions of the early universe.

"In those pockets you can make these big stars, make the binaries, and then they'll merge right away and we would detect those as well."

Belczynski, Holz, and collaborators have based their simulations on what they regard as the best models available. They assume "isolated formation," which involves two stars forming in a binary, evolving in tandem into black holes, and eventually merging with a burst of gravitational wave emission.

A competing model is "dynamical formation," which focuses on regions of the galaxy that contain a high density of independently evolving stars. Eventually, many of them will find each other and form binaries.

"There are dynamical processes by which those black holes get closer and closer and eventually merge," Holz said. Identifying which black holes merged under which scenario is difficult.

One potential method would entail examining the black holes' relative spins. Binary stars that evolved dynamically are expected to have randomly aligned spins; detecting a preference for aligned spins would be clear evidence in favor of the isolated evolutionary model.

LIGO is not yet able to precisely measure black hole spin alignment, "but we're starting to get there," Holz said. "This study represents the first steps in the birth of the entirely new field of gravitational wave astronomy. We have been waiting for a century, and the future has finally arrived."

Research paper: "The First Gravitational-Wave Source from the Isolated Evolution of Two Stars in the 40-100 Solar Mass Range," Krzysztof Belczynski, Daniel E. Holz, Tomasz Bulik and Richard O'Shaughnessy, 2016 June 23, Nature


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University Of Chicago
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
Gravitational waves could reveal black hole seeds
Nottingham, UK (SPX) Jun 29, 2016
Gravitational waves captured by space-based detectors could help identify the origins of supermassive black holes, according to new computer simulations of the universe. Scientists led by Durham University's Institute for Computational Cosmology ran the huge cosmological simulations that can be used to predict the rate at which gravitational waves caused by collisions between the monster black h ... read more


TIME AND SPACE
Russian Moon Base to Hold Up to 12 People

US may approve private venture moon mission: report

Fifty Years of Moon Dust

Airbus Defence and Space to guide lunar lander to the Moon

TIME AND SPACE
NASA Scientists Discover Unexpected Mineral on Mars

Hardware for Journey to Mars is a 'Big Catch'

Opportunity Wraps up Work on 'Wheel Scuff'

Dutch crops grown on 'Mars' soil found safe to eat

TIME AND SPACE
Blue Origin has fourth successful rocket booster landing

TED Talks aim for wider global reach

Disney brings its brand to Shanghai with new theme park

Tech, beauty intersect in Silicon Valley

TIME AND SPACE
China's newest rocket ready for blast-off

China preparing for new era of space economy

China to send Chang'e-4 to south pole of moon's far-side

Experts Fear Chinese Space Station Could Crash Into Earth

TIME AND SPACE
Down to Earth: Returned astronaut relishes little things

NASA Ignites Fire Experiment Aboard Space Cargo Ship

A Burial Plot for the International Space Station

Three astronauts touch down after 6 months in space

TIME AND SPACE
LSU Chemistry Experiment Aboard Historic Suborbital Space Flight

Spaceflight contracts India's PSLV to launch 12 Planet Dove nanosats

Purdue experiment aboard Blue Origin suborbital rocket a success

Ariane 5 delivers its heaviest commercial payload

TIME AND SPACE
Newborn Planet Discovered Around Young Star

NASA's K2 Finds Newborn Exoplanet Around Young Star

"Electric Wind" Can Strip Earth-Like Planets of Oceans and Atmospheres

San Francisco State University astronomer helps discover giant planet orbiting 2 suns

TIME AND SPACE
Scientists consider building cities of the future out of bone

Quantum calculations broaden the understanding of crystal catalysts

10,000 windows onto biomolecular information processing

SSL-Built Satellite For Indonesian Bank Is Performing Post-Launch Maneuvers According To Plan









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.