. 24/7 Space News .
CARBON WORLDS
Simulating CO2 saturation in rocks offers clues to carbon capture, storage
by Staff Writers
Fukuoka, Japan (SPX) Apr 18, 2016


Chematic of a sandstone sample receiving CO2 injection, indicating the difference in detail in the simple typical model (left) and the more realistic digital rock model used in the study (right). The greater detail provided by the digital rock model can help to identify the relevant processes of CO2 movement and the rock's potential for CO2 storage in natural rock reservoirs. Image courtesy International Institute for Carbon-Neutral Energy Research (I2CNER), Kyushu University. For a larger version of this image please go here.

Carbon capture and storage (CCS) is a relatively new method for capturing carbon dioxide (CO2) emissions from power stations and industrial processes and pushing the greenhouse gas underground to prevent it from entering the atmosphere. Suitable locations for CCS include depleted oil and gas fields or deep aquifers. A detailed understanding of the passage of fluid within the rocks of these target locations is imperative for ensuring that CO2 is stored effectively and leakage risk is minimized.

This level of detail naturally requires state-of-the-art techniques, and one such method is under development at Kyushu University's International Institute for Carbon-Neutral Energy Research (I2CNER) and Department of Earth Resources Engineering.

"The idea is that if we can generate a detailed and realistic model of the target reservoir rock, we can precisely determine how the CO2 will displace water," lead and corresponding author Takeshi Tsuji of I2CNER explains.

"We can then use the model to help us to estimate the storage capacity and leakage risk for CO2 capture below ground."

There have been many studies of the passage of CO2 through porous rocks, but these rely on relatively simple computer models that typically assume the pores are the same size and shape and are spread uniformly through the rock.

"These techniques, and simple laboratory simulations, limit our ability to understand a broad range of potential CO2 storage reservoirs below ground," study coauthor Fei Jiang says.

The researchers scanned the rocks using X-ray microcomputed tomography, a similar technology to that used in hospitals to see inside the human body, and combined the results with detailed mathematical simulations.

Using this "digital rock model," they were able to generate a picture of the real displacement of water by CO2 below ground and identify the optimal conditions for CO2 storage in real rocks.

The application of this approach to a sandstone sample allowed the researchers to examine the movement of fluids inside the rock at an unprecedented level of detail. This enhances understanding of the processes that occur at the micro-scale inside the rock as CO2 is injected.

"We were able to identify the main regime for fluid displacement inside our sandstone sample," Tsuji explains, "and because of the properties of our sandstone, we can determine which processes are most dominant in natural rocks that could be used for CO2 storage."

In the future, if rock samples are available from a potential reservoir, the method could be used to analyze rock's storage potential and contribute to advancement of CCS as a viable technique for CO2 removal.

The article "Characterization of immiscible fluid displacement processes with various capillary numbers and viscosity ratios in 3D natural sandstone" was published in Advances in Water Resources.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Kyushu University, I2CNER
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CARBON WORLDS
Optical approach offers faster and less expensive method for carbon dating
Washington DC (SPX) Apr 13, 2016
Researchers from Istituto Nazionale di Ottica (INO), within Consiglio Nazionale delle Ricerche (CNR), Italy have demonstrated a new compact spectroscopic instrument that offers a highly sensitive optical method for detecting radiocarbon dioxide concentration, which can be used to carbon date fossils and archaeological artifacts. The instrument, which uses a new approach called saturated-ab ... read more


CARBON WORLDS
Supernova iron found on the moon

Russia to shift all Lunar launches to Vostochny Cosmodrome

Lunar lava tubes could help pave way for human colony

The Moon thought to play a major role in maintaining Earth's magnetic field

CARBON WORLDS
Rover mini-walkabout to find clay mineral continues

First light for ExoMars

Russia, Italy plan first bid to explore beneath mars surface in 2018

First joint EU-Russian ExoMars mission to reach Mars orbit Oct 16

CARBON WORLDS
NASA blasts Orion Service Module with giant horns

Mobile phone technology propels Starshot's ET space search

Concept's success buoys Commercial Crew's path to flight

A US Department of Space

CARBON WORLDS
Chinese scientists develop mammal embryos in space for first time

China begins testing Tiangong-2 space lab

Lessons learned from Tiangong 1

China launches SJ-10 retrievable space science probe

CARBON WORLDS
15 years of Europe on the International Space Station

BEAM successfully installed to the International Space Station

NASA to test first expandable habitat on ISS

Dragon and Cygnus To Meet For First Time In Space

CARBON WORLDS
Arianespace cooperation with Russia remains smooth amid sanctions

Orbital ATK awarded major sounding rocket contract by NASA

SpaceX lands rocket on ocean platform for first time

SpaceX cargo arrives at crowded space station

CARBON WORLDS
University of Massachusetts Lowell PICTURE-B Mission Completed

Lone planetary-mass object found in family of stars

Stars strip away atmospheres of nearby super-Earths

1917 astronomical plate has first-ever evidence of exoplanetary system

CARBON WORLDS
Students observe damaged Hitomi X-ray satellite and debris

Why sailing to the stars has suddenly become a realistic goal

Strathclyde-led project to open up space technology to new nations

Progress of simulating dynamics in heterogeneous materials









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.