Subscribe free to our newsletters via your
. 24/7 Space News .


Subscribe free to our newsletters via your




















DEEP IMPACT
Hexagonal diamond could serve as meteor impact marker
by Staff Writers
Livermore CA (SPX) Mar 17, 2016


It has been hypothesized that lonsdaleite forms when graphite-bearing meteors strike the Earth. The violent impact generates incredible heat and pressure, transforming the graphite into diamond while retaining the graphite's original hexagonal structure. For a larger version of this image please go here.

In 1967, a hexagonal form of diamond, later named lonsdaleite, was identified for the first time inside fragments of the Canyon Diablo meteorite, the asteroid that created the Barringer Crater in Arizona. Since then, occurrences of lonsdaleite and nanometer-sized diamonds have been speculated to serve as a marker for meteorite impacts, having also been connected to the Tunguska explosion in Russia, the Ries crater in Germany, the Younger Dryas event in sites across Northern America and more.

It has been hypothesized that lonsdaleite forms when graphite-bearing meteors strike the Earth. The violent impact generates incredible heat and pressure, transforming the graphite into diamond while retaining the graphite's original hexagonal structure. However, despite numerous theoretical and limited experimental studies, crucial questions have remained unresolved for short-time high-pressure environments relevant to meteor impacts, particularly the structural state immediately after the shock transit, the timescales involved and the influence of crystalline orientation.

In a new paper published by Nature Communications, a team of researchers, including scientists from Lawrence Livermore National Laboratory (LLNL), provide new insight into the process of the shock-induced transition from graphite to diamond and uniquely resolve the dynamics of the phase change.

The experiments show unprecedented in situ X-ray diffraction measurements of dynamic diamond formation on nanosecond timescales by shock compression of graphite starting at pressures above 0.5 Mbar (1 Mbar = 1 million atmospheres). The team observed the direct formation of lonsdaleite above 1.7 Mbar, for the first time resolving the process that has been proposed to explain the main natural occurrence of this crystal structure being close to meteor impact sites.

"Due to difficulties in creating lonsdaleite under static conditions, the overall existence of this crystal structure in nature has been questioned recently," said lead author Dominik Kraus. Kraus conducted this research while working as a University of California, Berkeley, Physics Department postdoc sited within LLNL's NIF and Photon Science directorate. He now serves as the Helmholtz Young Investigator group leader at Helmholtz-Zentrum Dresden-Rossendorf in Germany.

"However, static experiments cannot mimic fast dynamics such as those in violent meteor impact events," he said. "Here we show that we can indeed create a lonsdaleite structure during dynamic high-pressure events. This is interesting for modeling dynamic phase transitions in general, but also shows that the lonsdaleite found in nature could indeed serve as a marker for violent meteor impacts."

The experiments were conducted at the Matter at Extreme Conditions (MEC) experimental area at the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory at Stanford. Graphite samples were shock-compressed to pressures of up to 2 million atmospheres (2 Mbar) to trigger the structural transitions from graphite to diamond and lonsdaleite. The phase changes in the high-pressure samples were probed with ultrafast (femtosecond) X-ray pulses created by LCLS.

According to Kraus, this was the very first in situ structure measurement of the shock-induced graphite to diamond transition. Before these experiments, all conclusions regarding this structural transition where based from the material that was recovered after applying the shock drive or dynamic measurements of macroscopic quantities, such as density and pressure.

"You won't get rich from our experiments, but the shock-induced transition from graphite to diamond already has important industry applications," he said.

"For example, nanometer-sized diamonds for fine polishing of materials are created by detonation of carbon-bearing explosives. These explosions typically generate pressures up to ~0.5 Mbar, just above the threshold of diamond formation. Here we show that above 2 Mbar, the lonsdaleite structure can be generated in a very pure form. Since pure lonsdaleite is supposedly even harder than diamond, this is highly interesting and other groups now try to recover these samples after an experiment."

Kraus was joined by LLNL co-authors Tilo Doeppner and Benjamin Bachmann, and scientists from the University of California, Berkeley, SLAC, the University of Warwick, the Max Planck Institute, Technical University Darmstadt, Helmholtz-Zentrum Dresden-Rossendorf, the University of Oxford and GSI.

.


Related Links
Lawrence Livermore National Laboratory
Asteroid and Comet Impact Danger To Earth - News and Science






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
DEEP IMPACT
Could Laser Weapon Save Earth from Killer Asteroids?
Los Angeles CA (SPX) Mar 02, 2016
Potentially hazardous asteroid are still looming large in the minds of scientists engaged in planetary defense issues. Numerous strategies describing deflection of Near-Earth Objects (NEOs) have been proposed, including methods employing kinetic impactors, robotic mining or gravity tractors. However, one of the proposed concepts has been lately reconsidered by a team of researchers, becoming one ... read more


DEEP IMPACT
Permanent Lunar Colony Possible in 10 Years

China to use data relay satellite to explore dark side of moon

NASA May Return to Moon, But Only After Cutting Off ISS

Lunar love: When science meets artistry

DEEP IMPACT
Europe's New Mars Mission Bringing NASA Radios Along

Europe, Russia embark on search for life on Mars

How the ExoMars mission could sniff out life on Mars

ExoMars on its way to solve the Red Planet's mysteries

DEEP IMPACT
Astronaut Scott Kelly to retire in April

Space travel rules needed within 5 years: UN

Belgium Plans to Create Own National Space Agency

Accelerating discovery with new tools for next generation social science

DEEP IMPACT
China's ambition after space station

Sky is the limit for China's national strategy

Aim Higher: China Plans to Send Rover to Mars in 2020

China's lunar probe sets record for longest stay

DEEP IMPACT
Marshall supports 15 years of ISS science discoveries

Space station astronauts ham it up to inspire student scientists

Roscosmos-NASA Contract on US Astronauts Delivery to ISS on Restructuring

NASA station leads way for improved measurements of Earth orientation, shape

DEEP IMPACT
ISRO launches PSLV C32, India's sixth navigation satellite

Soyuz 2-1B Carrier Rocket Launched From Baikonur

Assembly of Russia's Soyuz Rocket With Earth-Sensing Satellite Completed

Ariane 5 launch contributes to Ariane 6 development

DEEP IMPACT
NASA's K2 mission: Kepler second chance to shine

Star eruptions create and scatter elements with Earth-like composition

Astronomers discover two new 'hot Jupiter' exoplanets

Sharpest view ever of dusty disc around aging star

DEEP IMPACT
Superman can start worrying - we've got the formula for (almost) kryptonite

ORNL researchers stack the odds for novel optoelectronic 2-D materials

Total invisibility cloak an impossibility, scientists say

Unpacking space radiation to control astronaut and earthbound cancer risk




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.