. 24/7 Space News .
CHIP TECH
Semiconductor quantum transistor points to photon-based computing
by Staff Writers
College Park, MD (SPX) Jul 17, 2018

file illustration only

Transistors are tiny switches that form the bedrock of modern computing; billions of them route electrical signals around inside a smartphone, for instance.

Quantum computers will need analogous hardware to manipulate quantum information. But the design constraints for this new technology are stringent, and today's most advanced processors can't be repurposed as quantum devices. That's because quantum information carriers, dubbed qubits, have to follow different rules laid out by quantum physics.

Scientists can use many kinds of quantum particles as qubits, even the photons that make up light. Photons have added appeal because they can swiftly shuttle information over long distances, and they are compatible with fabricated chips. However, making a quantum transistor triggered by light has been challenging because it requires that the photons interact with each other, something that doesn't ordinarily happen on its own.

Now, researchers at the University of Maryland's A. James Clark School of Engineering and Joint Quantum Institute (JQI) - led by Professor of Electrical and Computer Engineering, JQI Fellow, and Institute for Research in Electronics and Applied Physics Affiliate Edo Waks - have cleared this hurdle and demonstrated the first single-photon transistor using a semiconductor chip.

The device, described in the July 6 issue of Science, is compact; roughly one million of these new transistors could fit inside a single grain of salt. It is also fast and able to process 10 billion photonic qubits every second.

"Using our transistor, we should be able to perform quantum gates between photons," says Waks. "Software running on a quantum computer would use a series of such operations to attain exponential speedup for certain computational problems.

The photonic chip is made from a semiconductor with numerous holes in it, making it appear much like a honeycomb. Light entering the chip bounces around and gets trapped by the hole pattern; a small crystal called a quantum dot sits inside the area where the light intensity is strongest.

Analogous to conventional computer memory, the dot stores information about photons as they enter the device. The dot can effectively tap into that memory to mediate photon interactions - meaning that the actions of one photon affect others that later arrive at the chip.

"In a single-photon transistor the quantum dot memory must persist long enough to interact with each photonic qubit," says Shuo Sun, lead author of the new work and postdoctoral research fellow at Stanford University who was a UMD grad student at the time of the research. "This allows a single photon to switch a bigger stream of photons, which is essential for our device to be considered a transistor."

To test that the chip operated like a transistor, the researchers examined how the device responded to weak light pulses that usually contained only one photon. In a normal environment, such dim light might barely register. However, in this device, a single photon gets trapped for a long time, registering its presence in the nearby dot.

The team observed that a single photon could, by interacting with the dot, control the transmission of a second light pulse through the device. The first light pulse acts like a key, opening the door for the second photon to enter the chip. If the first pulse didn't contain any photons, the dot blocked subsequent photons from getting through.

This behavior is similar to a conventional transistor where a small voltage controls the passage of current through its terminals. Here, the researchers successfully replaced the voltage with a single photon and demonstrated that their quantum transistor could switch a light pulse containing around 30 photons before the quantum dot's memory ran out.

Waks says that his team had to test different aspects of the device's performance prior to getting the transistor to work. "Until now, we had the individual components necessary to make a single photon transistor, but here we combined all of the steps into a single chip," he says.

Sun says that with realistic engineering improvements their approach could allow many quantum light transistors to be linked together. The team hopes that such speedy, highly connected devices will eventually lead to compact quantum computers that process large numbers of photonic qubits.

Research paper


Related Links
University of Maryland
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CHIP TECH
China court 'bans sales' of chips from US firm Micron
Shanghai (AFP) July 4, 2018
A Chinese technology firm embroiled in a patent dispute with US chip giant Micron said Wednesday that a court had ruled in its favour and ordered an immediate halt of several Micron products in China. According to the state-owned Fujian Jinhua Integrated Circuit Co, a court in the southeastern city of Fuzhou has ruled that Micron must stop sales of more than a dozen solid-state drives, memory sticks and chips. The court ruling was not immediately available. A Taiwanese partner of Jinhua, Uni ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Google parent 'graduates' moonshot projects Loon, Wing

Testing Refines Requirements for Deep Space Habitat Design

Orion Jettison Motor Ready for Crew Escape System Test

US Asks Russia to Fix Its Broken Toilet on ISS

CHIP TECH
Aurora Launch Services established in Alaska To provide responsive launch services

Dragon Now Installed To Station For Month-Long Stay

China to develop new series of carrier rockets: expert

Dragon delivers some ICE

CHIP TECH
Airbus wins two ESA studies for Mars Sample Return mission

NASA listens out for Opportunity everyday

UK space sector set to benefit from new European Space Agency contract

Mars to Pamper Gazers With Stunning Sight Amid NASA's Dust Storm Concerns

CHIP TECH
China launches new space science program

China Rising as Major Space Power

China launches new-tech experiment twin satellites

China confirms reception of data from Gaofen-6 satellite

CHIP TECH
Yes we've got a space agency - but our industry needs 'Space Prize Australia'

GomSpace and Aerial Maritime Ltd enter MOU for delivery and operation of a global constellation

SSL ships first of 3 ComSats slated for launch this summer

Forget Galileo - UK space sector should look to young stars instead

CHIP TECH
Dutch city to unveil world's first 3D-printed housing complex

Photonic capsules for injectable laser resonators

Plastic is light, versatile and here to stay -- for now

Paper-cut provides model for 3D intelligent nanofabrication

CHIP TECH
NASA's Kepler Spacecraft Pauses Science Observations to Download Science Data

Researchers see beam of light from first confirmed neutron star merger emerge from behind sun

Detecting the Boiling Atmosphere of the Hottest Known Exoplanet

More clues that Earth-like exoplanets are indeed Earth-like

CHIP TECH
Europa's Ocean Ascending

Jupiter's moons create uniquely patterned aurora on the gas giant planet

'Cataclysmic' collision shaped Uranus' evolution

Webb Telescope to target Jupiter's Great Red Spot









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.