Subscribe free to our newsletters via your
. 24/7 Space News .

Subscribe free to our newsletters via your

Seaweed offers the solution to transporting stem cells and wound treatment
by Staff Writers
Newcastle, UK (SPX) Feb 01, 2016

This is a photograph of stem cells in alginate beads with Newcastle University, UK team in lab. Image courtesy Newcastle University, UK. For a larger version of this image please go here.

Publishing in STEM CELLS Translational Medicine Professor Che Connon and Dr Stephen Swioklo describe the low-cost seaweed solution. Che Connon, Professor of Tissue Engineering at Newcastle University explains: "The stem cells are surrounded by an alginate gel which protects them from the environment - a bit like frogspawn. We found them unchanged even after three days at room temperature.

"This has lots of advantages and applications. For example, we have used them to make a bandage which contains human stem cells which could be applied to a wound such as an ulcer or burn to speed up the healing process."

Stem cells for healing
There is much scientific evidence showing stem cells from fatty tissue (adipose-derived mesenchymal stem cells) can be used to improve wound healing by reducing inflammation and speeding up wound closure. However, until now the problem has been that these stem cells have had to be stored and handled by experts under specialised conditions - limiting their practical use.

Rather than keeping them at 37 degrees Celsius, in atmospheric oxygen and 5% carbon dioxide, encasing the stem cells in an alginate gel is shown in the academic paper to prolong their life for up to three days at ambient temperatures. This offers an effective and simple solution to many of the challenges of transporting cell cultures.

Alginate is a natural material extracted from seaweed that is used in cosmetics, food manufacturing and more recently in healthcare. Alginate on its own without stem cells is used in wound dressings to keep burns moist.

The study found that after three days at a range of temperatures (between 4 and 21 degrees C) up to 90% of the stem cells were still viable and available for healing. Medically, 70% viability is considered acceptable.

The team think that the alginate encapsulation offers a degree of protection from the environment. They also believe it may be acting like a corset, preventing the stem cell from expanding and being destroyed, a process known as lysing - which would normally occur within a day when unprotected cells are stored in their liquid state.

Stem cell encapsulation method
Using the alginate solution the Newcastle University team have been able to develop stem cell beads and also a gel which can be put into a mould to form a jelly pad or film.

Dr Stephen Swioklo describes the process: "The stem cells are grown from the standard frozen form and then mixed into the alginate solution. This is extracted from a type of brown algae, a seaweed commonly used in food and medical applications.

"This can either be dropped into a vial of calcium chloride which forms cross-links making the alginate set, forming tiny beads. Or the gel can be placed into a mould to form a film which sets in a couple of minutes. We have used this to make plasters and bandages.

"One circular disc just an inch diameter was demonstrated in our study to effectively preserve a million stem cells and could easily contain up to 10 million."

The 'Stem-gell' bandage has many potential uses from paramedics treating people at the scene of an accident to the army battlefield. Some of the work has been funded by the Defence Science and Technology Laboratory (Dstl), part of the Ministry of Defence.


Related Links
Newcastle University
The Clone Age - Cloning, Stem Cells, Space Medicine

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Previous Report
Breakthrough in human cell transformation could revolutionize regenerative medicine
Bristol, UK (SPX) Jan 20, 2016
A breakthrough in the transformation of human cells by an international team led by researchers at the University of Bristol could open the door to a new range of treatments for a variety of medical conditions. Their paper, published in Nature Genetics, demonstrates the creation of a system that predicts how to create any human cell type from another cell type directly, without the need for expe ... read more

Russia postpones manned Lunar mission to 2035

Audi joins Google Lunar XPrize competition

Lunar mission moves a step closer

Momentum builds for creation of 'moon villages'

Mars Rover Opportunity Busy Through Depth of Winter

India to Cooperate With France on Next Mission to Mars

Opportunity rock abrasion tool conducts two rock grinds

Curiosity gets a good taste of scooped, sieved sand

Voyager Mission Celebrates 30 Years Since Uranus

Arab nations eye China, domestic market to revive tourism

2016 Goals Vital to Commercial Crew Success

Space: The here-and-now frontier

China aims for the Moon with new rockets

China shoots for first landing on far side of the moon

Chinese Long March 3B to launch Belintersat-1 telco sat for Belarus

China Plans More Than 20 Space Launches in 2016

Russian Cosmonauts to Attach Thermal Insulation to ISS

Astronaut Scott Kelly plays ping pong with water

Japanese astronaut learned Russian to link two nations

NASA, Texas Instruments Launch mISSion imaginaTIon

70th consecutive successful launch for Ariane 5

AMOS-6 Scheduled for May 2016 Launch by Space-X

Arianespace's year-opening Ariane 5 mission is approved for launch

Ariane 5 is readied for an Arianespace leading customer Intelsat

Astronomers discover largest solar system

Lonely Planet Finds a Mum a Trillion Km Away

Follow A Live Planet Hunt

Lab discovery gives glimpse of conditions found on other planets

Energy harvesting via smart materials

A new quantum approach to big data

Apple quietly working on virtual reality: report

Acoustic tweezers provide much needed pluck for 3-D bioprinting

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.