Free Newsletters - Space - Defense - Environment - Energy - Solar - Nuclear
..
. 24/7 Space News .




TIME AND SPACE
Scientists work on 'quantum superclock' to reveal mysteries of time itself
by Staff Writers
Moscow (RIA Novosti) Jun 24, 2014


Illustration only.

Physicists say they believe they're on track to creating a "quantum superclock" that would revolutionize the way the world tells time. If the work proves to be a success, than the concept of time as it's currently understood could be changed drastically and allow a whole new idea of accuracy to prevail.

According to a study published by the researchers this week in the Nature Physics scholarly journal, it might soon be possible to harness the power of a global quantum network of clocks to "allow construction of a real-time single international time scale (world clock) with unprecedented stability and accuracy."

The study - "A quantum network of clocks" - calls for "a quantum, cooperative protocol for operating a network of geographically remote optical atomic clocks."

"Using nonlocal entangled states, we demonstrate an optimal utilization of global resources, and show that such a network can be operated near the fundamental precision limit set by quantum theory," reads an abstract of their report. "Furthermore, the internal structure of the network, combined with quantum communication techniques, guarantees security both from internal and external threats."

Broken down, the scientists' project isn't all that complicated. Alexandra Witze wrote for the Nature website that, essentially, the researchers are relying on two ideas that are already major points of focus for physicists: atomic clocks as they currently exist, and quantum entanglement, "in which pairs of particles become linked in such a way that measuring a property of one of them instantaneously determines the same property for the other," she wrote.

By linking a network of orbiting, atomic clocks, those two schools of study may be able to be merged and provide physicists with what would unarguably be the most precise clock in existence. The scientists' response for the Nature Physics story says linking 10 such atomic clocks and putting them into satellite may be the way to proceed.

"One satellite, as the network's center, would start by preparing its clock particles in an entangled state. It would then communicate with a neighboring satellite to extend the entanglement there. The linking would eventually spread through the whole fleet, joining the satellites in one quantum network," Witze wrote.

"You'd be able to see someone digging a tunnel under the US-Mexico border from space," Chris Monroe, a physicist at the Joint Quantum Institute at the University of Maryland in College Park, told Science News this week.

Eric Kessler, a co-author of the paper, told Nature that his colleagues' proposal, while still in the planning stages, is admittedly "a little bit visionary." Nevertheless, the researchers believe the blueprint does exist to take the theory behind quantum physics and create a network of atomic clocks that would be more accurate than anything ever available.

"All the building blocks have been demonstrated in principle, and we want to show what might lie ahead if all these fields merge together," Kessler said.

"There's no doubt this is a very futuristic proposal,"said Kessler. "We've got a long way to go."

Source: RIA Novosti

.


Related Links
Joint Quantum Institute at the University of Maryland
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TIME AND SPACE
Can we see the arrow of time?
Boston MA (SPX) Jun 24, 2014
Einstein's theory of relativity envisions time as a spatial dimension, like height, width, and depth. But unlike those other dimensions, time seems to permit motion in only one direction: forward. This directional asymmetry - the "arrow of time" - is something of a conundrum for theoretical physics. But is it something we can see? An international group of computer scientists believes that ... read more


TIME AND SPACE
NASA LRO's Moon As Art Collection Is Revealed

Solar photons drive water off the moon

55-year old dark side of the moon mystery solved

New evidence supporting moon formation via collision of 2 planets

TIME AND SPACE
Curiosity celebrates one-year Martian anniversary

Aluminum-Bearing Site on Mars Draws NASA Visitor

Mars Curiosity Rover Marks First Martian Year with Mission Successes

NASA Invites Comment on Mars 2020 Environmental Impact Statement

TIME AND SPACE
Orion Parachute Test Hits No Snags

NASA has a Problem with Unauthorized Access to it's Technologies

Elon Musk plans to take people to Mars within 10 years

Moon to see first tourists by 2017, single roundtrip ticket costs $150 mln

TIME AND SPACE
Chinese lunar rover alive but weak

China's Jade Rabbit moon rover 'alive but struggling'

Chinese space team survives on worm diet for 105 days

Moon rover Yutu comes closer to public

TIME AND SPACE
A Laser Message from Space

D-Day for the International Space Station

US expects to continue partnership with Russia on ISS after 2020

Station Crew Wraps Up Week With Medical Research

TIME AND SPACE
SpaceX to launch six satellites all at once

Arianespace A World Leader In The Satellite Launch Market

Airbus Group and Safran To Join Forces in Launcher Activities

European satellite chief says industry faces challenges

TIME AND SPACE
Mega-Earth in Draco Smashes Notions of Planetary Formation

Kepler space telescope ready to start new hunt for exoplanets

Astronomers Confounded By Massive Rocky World

Two planets orbit nearby ancient star

TIME AND SPACE
Strange physics turns off laser

Raytheon touts blimp-borne radar system

NIST technique could make sub-wavelength images at radio frequencies

Researchers develop new ultralight, ultrastiff 3D printed materials




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.