Free Newsletters - Space - Defense - Environment - Energy - Solar - Nuclear
..
. 24/7 Space News .




WATER WORLD
Scientists uncover relationship between lavas erupting on sea floor and deep-carbon cycle
by Staff Writers
Washington DC (SPX) May 03, 2013


Molten magma erupted onto the seafloor freezes to glass that contains clues to its origin in Earth's deep interior and ancient past (field of view ~1 cm). Volcanic glasses like this one may reveal a link between Earth's oxidation state and the deep carbon cycle. Credit: Glenn Macpherson and Tim Gooding.

Scientists from the Smithsonian and the University of Rhode Island have found unsuspected linkages between the oxidation state of iron in volcanic rocks and variations in the chemistry of the deep Earth. Not only do the trends run counter to predictions from recent decades of study, they belie a role for carbon circulating in the deep Earth. The team's research was published May 2 in Science Express.

Elizabeth Cottrell, lead author and research geologist at the Smithsonian's National Museum of Natural History, and Katherine Kelley at the University of Rhode Island's Graduate School of Oceanography measured the oxidation state of iron, which is the amount of iron that has a 3+ versus a 2+ electronic charge, in bits of magma that froze to a glass when they hit the freezing waters and crushing pressures of the sea floor.

Due to the high precision afforded by the spectroscopic technique they used, the researchers found very subtle variations in the iron-oxidation state that had been overlooked by previous investigations.

The variations correlate with what Cottrell described as the "fingerprints" of the deep Earth rocks that melted to produce the lavas-but not in the way previous researchers had predicted.

The erupted lavas that have lower concentrations of 3+ iron also have higher concentrations of elements such as barium, thorium, rubidium and lanthanum, that concentrate in the lavas, rather than staying in their deep Earth home.

More importantly, the oxidation state of iron also correlates with elements that became enriched in lavas long ago, and now, after billions of years, show elevated ratios of radiogenic isotopes. Because radiogenic isotopic ratios cannot be modified during rock melting and eruption, Cottrell called this "a dead ringer for the source of the melt itself."

Carbon is one of the "geochemical goodies" that tends to become enriched in the lava when rocks melt. "Despite is importance to life on this planet, carbon is a really tricky element to get a handle on in melts from the deep Earth," said Cottrell.

"That is because carbon also volatilizes and is lost to the ocean waters such that it can't easily be quantified in the lavas themselves. As humans we are very focused on what we see up here on the surface.

"Most people probably don't recognize that the vast majority of carbon-the backbone of all life-is located in the deep Earth, below the surface-maybe even 90 percent of it."

The rocks that the team analyzed that were reduced also showed a greater influence of having melted in the presence of carbon than those that were oxidized.

"And this makes sense because for every atom of carbon present at depth it has to steal oxygen away from iron as it ascends toward the surface," said Cottrell.

This is because carbon is not associated with oxygen at depth, it exists on its own, like in the mineral diamond. But by the time carbon erupts in lava, it is surrounded by oxygen.

In this way, concludes Cottrell, "carbon provides both a mechanism to reduce the iron and also a reasonable explanation for why these reduced lavas are enriched in ways we might expect from melting a carbon-bearing rock."

.


Related Links
Smithsonian
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





WATER WORLD
JFAST scientists retrieve temperature data from Japan Trench observatory
Santa Cruz CA (SPX) May 09, 2013
With the successful retrieval of a string of instruments from deep beneath the seafloor, an international team of scientists has completed an unprecedented series of operations to obtain crucial temperature measurements of the fault that caused the devastating Tohoku earthquake and tsunami in March 2011. Emily Brodsky, a professor of Earth and planetary sciences at UC Santa Cruz, helped or ... read more


WATER WORLD
Scientists Use Laser to Find Soviet Moon Rover

Characterizing The Lunar Radiation Environment

Russia rekindles Moon exploration program, intends setting up first human outposts there

Pre-existing mineralogy may survive lunar impacts

WATER WORLD
NASA Invites Public to Send Names And Messages to Mars

Studying meteorites may reveal Mars' secrets of life

NASA says Mars rover Opportunity back on the job after standby time

Opportunity in Standby as Commanding Moratorium Ends

WATER WORLD
NASA's Chief Defends Commercial Spaceflight Agreements

NASA Invites the Public to Fly Along with Voyager

Google's Brin keeps spotlight on future technologies

Mysterious water on Jupiter came from comet smash

WATER WORLD
On Course for Shenzhou 10

Yuanwang III, VI depart for space-tracking missions

Shenzhou's Shadow Crew

Shenzhou 10 sent to launch site

WATER WORLD
NASA to pay Russia $424 mln more for lift into space

NASA Extends Crew Flight Contract with Russian Space Agency

Cargo spaceship docks with ISS despite antenna mishap

ISS Communications Test Bed Checks Out; Experiments Begin

WATER WORLD
Checkout is underway with O3b Networks' four satellites to be orbited on the next Arianespace Soyuz launch

The Well-Built Italian

O3b Networks' first four satellites arrive for the next Arianespace Soyuz launch

On the record with... Stephane Israel, Arianespace Chairman and CEO

WATER WORLD
Two New Exoplanets Detected with Kepler, SOPHIE and HARPS-N

Astronomer studies far-off worlds through 'characterization by proxy'

Mysterious Hot Spots Observed In A Cool Red Supergiant

Orbital Selected By NASA for TESS Astrophysics Satellite

WATER WORLD
NASA Partners With Utah State University's Space Dynamics Lab

Silicone liquid crystal stiffens with repeated compression

Researchers tackle collapsing bridges with new technology

Penn Research Helps to Show How Turbulence Can Occur Without Inertia




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement