. 24/7 Space News .
ENERGY TECH
Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D
by Staff Writers
Upton NY (SPX) Dec 13, 2016


A comparison of two different oxidation results in nickel-cobalt nanoparticles. While a small percentage of the particles form hollow spheres (top), the vast majority form a porous Swiss-cheese-like structure (bottom) that has much greater surface area for the same volume. Image courtesy Brookhaven National Laboratory. For a larger version of this image please go here.

Catalysts are at the heart of fuel cells-devices that convert hydrogen and oxygen to water and enough electricity to power vehicles for hundreds of miles. But finding effective, inexpensive catalysts has been a key challenge to getting more of these hydrogen-powered, emission-free vehicles out on the road.

To help tackle this challenge, scientists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory used a high-resolution electron microscope to study nanoscale details of catalytic particles made of nickel and cobalt-inexpensive alternatives to the costly platinum used in most fuel cells today.

A paper describing the research in the journal Nature Communications includes 3D, dynamic images that reveal how the particles' external and internal structure and chemical makeup change as they become catalytically active. Understanding these nanoscale structural and chemical features will help scientists learn what characteristics make the inexpensive particles most effective-and devise ways to optimize their performance.

Swiss-cheese surface area
One of the most important characteristics of a catalyst is having a high surface area compared to its volume. "Reactions happen on the surface," explained Huolin Xin, who led the work at Brookhaven's Center for Functional Nanomaterials (CFN). The more surface area there is, the higher the reactivity.

Tiny nanoparticles naturally have a large surface-to-volume ratio. However, the imaging techniques Xin and colleagues used to study the bimetallic nickel-and-cobalt particles revealed that these nanoparticles increase their surface area in an additional, unique way.

The transformation happens when the nanoparticles are oxidized. Instead of forming a metal oxide shell enclosing a single void in the center-as single-metal materials such as nickel and cobalt do-the bimetallic particles developed an extremely porous "Swiss cheese" like structure that was no longer hollow, Xin said.

"This is the first time anyone has shown how a bi-metallic material forms these Swiss cheese structures," Xin said.

Because the porous structure has a higher "packing density"-meaning more reactive material is packed into a smaller space than in hollow nanoparticles-it should result in higher catalytic activity, Xin said. The porous particles may also make stronger structures, which would be particularly useful in applications where mechanical specifications exclude weaker hollow structures, such as batteries.

Imaging the nanoscale details
Revealing the details of how these structures formed, including their chemical makeup, was no simple task. The scientists used chemical-sensitive electron tomography, which is a nanoscale version of a CAT scan, to track what was happening structurally and chemically on the surface and inside the particles in 3D as they were oxidizing. This process occurs as the sample is heated to 500 degrees Celsius.

"We custom-designed a sample holder that could withstand that change in temperature, while also letting us tilt the sample to scan it from every angle-all within a transmission electron microscope," Xin said.

These capabilities are unique to the CFN, a DOE Office of Science User Facility that offers both state-of-the-art instruments and the expertise of scientists like Xin to the entire scientific community through its user program.

Xin's team tracked precisely where metal ions were reacting with oxygen to become metal oxides-and discovered that the process takes place in two stages.

"In the first stage, oxidation occurs only on the surface, with metal ions moving out of the particles to react with the oxygen forming an oxide shell," Xin said. "In the second stage, however, oxidation starts to happen on the inside of the particles as well, suggesting that oxygen moves in."

The scientists suspected that tiny pinholes were created on the particles' surface as the oxide shell was forming, providing a pathway for the influx of oxygen. A closer look at one partially oxidized particle confirmed this suspicion, showing that as the oxide formed on the surface, it beaded up like droplets on a water-repellent surface, leaving tiny spaces in between.

The scientists also used "electron energy loss spectroscopy" and the distinct "chemical fingerprints" of nickel and cobalt to track where the individual elements were located within the particles as the oxidation process progressed. This gave them another way to see whether oxygen was finding a way into the particles.

"We found that cobalt moves preferentially to where the oxygen is," Xin explained. "This is because cobalt reacts more easily with oxygen than nickel does."

During early oxidation, cobalt preferentially moved to the exterior of the particles to engage in the formation of the oxide shell. But later-stage scans revealed that the internal surfaces of the Swiss cheese pores were rich in cobalt as well.

"This supports our previous idea that oxygen is getting inside and pulling the cobalt out to the surface of the internal pores to react," Xin said.

This ability to monitor the surface chemistry of nanoparticles, both externally and along the internal curved surfaces of pores, could result in a more rational approach to catalyst design, Xin said.

"People usually try to just mix particles and create a better catalyst by trial and error. But what really matters is the surface structure. This imaging technology gives us an accurate way to determine the composition of naturally curved surfaces and interfaces to understand why one catalyst will perform better than another."

Research paper


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Brookhaven National Laboratory
Powering The World in the 21st Century at Energy-Daily.com






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
Finger swipe-powered phone? We're 1 step closer
East Lansing, MI (SPX) Dec 13, 2016
The day of charging cellphones with finger swipes and powering Bluetooth headsets simply by walking is now much closer. Michigan State University engineering researchers have created a new way to harvest energy from human motion, using a film-like device that actually can be folded to create more power. With the low-cost device, known as a nanogenerator, the scientists successfully operated an L ... read more


ENERGY TECH
Space Network upgrade to double data rates on ISS

Trump sits down with tech execs, including critics

Trump sits down with tech execs, including critics

NASA Tech - it's all around us

ENERGY TECH
Ultra-Cold Storage - Liquid Hydrogen may be Fuel of the Future

Technical glitch postpones NASA satellite launch

After glitch, NASA satellite launch set for Wednesday

China develops non-toxic propellant for orbiting satellites

ENERGY TECH
Bremen robot team successfully simulates Mars mission in Utah

First detection of boron on the surface of Mars

All eyes on Trump over Mars

A Promising Spot for Life on Mars

ENERGY TECH
Chinese missile giant seeks 20% of a satellite market

China-made satellites in high demand

Space exploration plans unveiled

China launches 4th data relay satellite

ENERGY TECH
UAE launches national space policy

Air New Zealand signs contract for Inmarsat's GX Aviation

European ministers ready ESA for a United Space in Europe in the era of Space 4.0

Nordic entrepreneurial spirit boosted by space

ENERGY TECH
Raytheon to produce additional Air and Missile Defense Radar equipment

U.S. State Dept. approves Sea Giraffe 3D radars for the Philippines

Velodyne LiDAR makes breakthrough for tiny, low cost solid-state LiDAR sensors

Discovery to inspire more radiation-resistant metals

ENERGY TECH
New species found near ocean floor hot springs

Carbonaceous chondrites shed light on the origins of life in the universe

Atlas of the RNA universe takes shape

Winds of rubies and sapphires strike the sky of giant planet

ENERGY TECH
Juno Captures Jupiter 'Pearl'

Juno Mission Prepares for December 11 Jupiter Flyby

Research Offers Clues About the Timing of Jupiter's Formation

New Perspective on How Pluto's "Icy Heart" Came to Be









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.