. 24/7 Space News .
TIME AND SPACE
Scientists shuffle the deck to create materials with new quantum behaviors
by Staff Writers
Ames IA (SPX) Nov 08, 2018

file illustration only

Layered transition metal dichalcogenides or TMDCs - materials composed of metal nanolayers sandwiched between two other layers of chalcogens - have become extremely attractive to the research community due to their ability to exfoliate into 2D single layers.

Similar to graphene, they not only retain some of the unique properties of the bulk material, but also demonstrate direct-gap semiconducting behavior, excellent electrocatalytic activity and unique quantum phenomena such as charge density waves (CDW).

Generating complex multi-principle element TMDCs essential for the future development of new generations of quantum, electronic, and energy conversion materials is difficult.

"It is relatively simple to make a binary material from one type of metal and one type of chalcogen," said Ames Laboratory Senior Scientist Viktor Balema.

"Once you try to add more metals or chalcogens to the reactants, combining them into a uniform structure becomes challenging. It was even believed that alloying of two or more different binary TMDCs in one single-phase material is absolutely impossible."

To overcome this obstacle, postdoctoral research associate Ihor Hlova used ball-milling and subsequent reactive fusion to combine such TMDCs as MoS2, WSe2, WS2, TaS2 and NbSe2. Ball-milling is a mechanochemical process capable of exfoliating layered materials into single- or few-layer-nanosheets that can further restore their multi-layered arrangements by restacking.

"Mechanical processing treats binary TMDCs like shuffling together two separate decks of cards, said Balema. "They are reordered to form 3D-heterostructured architectures - an unprecedented phenomenon first observed in our work."

Heating of the resulting 3D-heterostructures brings them to the edge of their stability, reorders atoms within and between their layers, resulting in single-phase solids that can in turn be exfoliated, or peeled into 2D single layers similar to graphene, but with their own, unique tunable properties.

"Preliminary examination of properties of only a few, earlier unavailable compounds, proves as exciting as synthetic results are," adds Ames Laboratory Senior Scientist and Distinguished Professor of Materials Science and Engineering Vitalij Pecharsky. "Very likely, we have just opened doors to the entirely new class of finely tunable, quantum matter."

The research is further discussed in the paper, "Multi-Principal Element Transition Metal Dichalcogenides via Reactive Fusion of 3D-Heterostructures," authored by Ihor Z. Hlova, Oleksandr Dolotko, Brett W. Boote, Arjun K. Pathak, Emily A. Smith, Vitalij K. Pecharsky, and Viktor P. Balema; and published on the cover of Chemical Communications.


Related Links
Ames Laboratory
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
JILA researchers see signs of interactive form of quantum matter
Washington DC (SPX) Nov 01, 2018
JILA researchers have, for the first time, isolated groups of a few atoms and precisely measured their multi-particle interactions within an atomic clock. The advance will help scientists control interacting quantum matter, which is expected to boost the performance of atomic clocks, many other types of sensors, and quantum information systems. The research is described in a Nature paper posted early online Oct. 31. JILA is jointly operated by the National Institute of Standards and Technology (NI ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Russia plans first manned launch to ISS Dec 3 after accident

Thrusters with additively manufactured components qualified to fly humans on Orion spacecraft

Plant hormone makes space farming a possibility

Installing life support the hands-free way

TIME AND SPACE
Rocket Lab enters high frequency launch operations

Soyuz launch failed due to assembly problem: Russia

NASA conducts a 'BOO-tiful' RS-25 engine test

Soyuz launch failed due to assembly problem: Russia

TIME AND SPACE
Water cycle along the northern rim of Hellas Basin throughout Mars' history

Five things to know about InSight's Mars landing

Naturally occurring 'batteries' fueled organic carbon synthesis on Mars

NASA launches a new podcast to Mars

TIME AND SPACE
China's space programs open up to world

China's commercial aerospace companies flourishing

China launches Centispace-1-s1 satellite

China tests propulsion system of space station's lab capsules

TIME AND SPACE
Telstar 18 VANTAGE satellite now operational over Asia Pacific

How Max Polyakov from Zaporozhie develops the Ukrainian space industry

SpaceFund launches the world's first space security token to fund the opening of the high frontier

ESA on the way to Space19+ and beyond

TIME AND SPACE
Video game action heads for the cloud

Making steps toward improved data storage

Super-computer brings 'cloud' to astronauts in space

Disorder plays a key role in phase transitions of materials

TIME AND SPACE
NASA retires Kepler Space Telescope, passes planet-hunting torch

Rocky and habitable - sizing up a galaxy of planets

Some planetary systems just aren't into heavy metal

Giant planets around young star raise questions about how planets form

TIME AND SPACE
SwRI team makes breakthroughs studying Pluto orbiter mission

ALMA maps temperature of Jupiter's icy moon Europa

NASA's Juno Mission Detects Jupiter Wave Trains

WorldWide Telescope looks ahead to New Horizons' Ultima Thule glyby









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.