Subscribe free to our newsletters via your
. 24/7 Space News .




CLONE AGE
Scientists sequence genome of worm that can regrow body parts, seeking stem cell insights
by Staff Writers
Cold Spring Harbor NY (SPX) Sep 23, 2015


Adult flatworm M. lignano and diagrammatic key are shown. The tiny worm intrigues scientists because it can regenerate almost its whole body following an injury. Hence, their effort to sequence its genome. Image courtesy Cold Spring Harbor Laboratory. For a larger version of this image please go here.

Tourists spending a recuperative holiday on the Italian coast may be envious of the regenerative abilities of locally found flatworm Macrostomum lignano. Named for its discovery near the Italian beach town of Lignano Sabbiadoro, this tiny worm can regenerate almost its whole body following an injury, and researchers have long been trying to understand how it's able to pull off this trick.

In work published in PNAS, a team of researchers has for the first time characterized the flatworm's genome, paving the way for a host of new studies of the worm and its regenerative capabilities. The team was led by Cold Spring Harbor Laboratory (CSHL) Professor and HHMI Investigator Gregory Hannon, also a Professor and Senior Group Leader at the CRUK Cambridge Institute at the University of Cambridge, and CSHL Associate Professor Michael Schatz.

"This flatworm can regenerate every part of its body except the brain," says Hannon. He was studying an important pathway in mammalian reproductive tissues when he became interested in Macrostomum. "This and other regenerating flatworms have the same kind of pathway operating in stem cells that is responsible for their remarkable regenerative capabilities. As we started to try to understand the biology of these stem cells, it very quickly became clear that we needed information about the genetic content of these organisms."

M. lignano turned out to have an unusually complex genome filled with repetitive elements that made it challenging to assemble and analyze, says Schatz. "At the genomic level it has almost no relationship to anything else that's ever been sequenced. It's very strange and unique in that sense." To overcome the extreme genomic complexity, the team used new long-read sequencing technology that boosted the quality of the genome sequence obtained by more than one hundred fold over standard short-read approaches.

The researchers used the worm's genomic information to study how gene expression changed during regeneration. "It's a very powerful tool to be able to see the genes that get activated that are responsible for regeneration of the animal," Schatz explains. "We think this is going to be a very important species for stem cell research."

The flatworm is ideal for studying stem cells, says lead author Kaja Wasik, who conducted the work as a PhD student in Hannon's lab along with co-lead author James Gurtowski from Schatz's lab.

"The worms are just like floating sacks full of stem cells, so they're very easily accessible," says Wasik. "From what we looked at, it looks like many of the developmental pathways that are present in humans are also present in the worms, and we can now study whether they potentially could be involved in regeneration."

According to co-author Peter Ladurner, an assistant professor at the University of Innsbruck, the worm has many properties that make it a good model system: "M. lignano is small, has simple tissues and organs, is transparent, and has sexual reproduction."

Well before its genome was available, M. lignano was already being studied for its insights into stem cells and tissue differentiation. The availability of the genome now enables researchers to do a lot of things they couldn't previously, such as search within the genome, have a list of genes in hand, and gain insights into the worm's genome organization.

Hannon says detailed analyses will be needed to figure out how the flatworm's stem cells are able to develop into a variety of different cell types. He is also planning to examine how the pathways he has studied in other organisms operate in the worms. "The goal of this project was to enable ourselves and others to do new biology. The hope is that as these tools become more available, the community will grow."

About 15 international research groups on three continents are actively working on Macrostomum flatworms, says co-author Lukas Scharer from the University of Basel. Scharer says he and Ladurner played a major role in helping to develop a broader Macrostomum research community.

"The worm was initially used as a model to study embryology and neurobiology, and starting in the late 1990s research expanded into stem cell biology, tissue homeostasis, and regeneration, topics that are still very actively studied today," he says. "We fully expect that the publication of the genome will lead to a surge in interest in this versatile model organism."

"Genome and transcriptome of the regeneration-competent flatworm, Macrostomum lignano" appears online in Proceedings of the National Academy of Sciences the week of September 21, 2015. The authors are: Kaja Wasik, James Gurtowski, Xin Zhou, Olivia Mendivil Ramos, Joaquina Dela?s, Giorgia Battistoni, Osama El Demerdash, Ilaria Falciatori, Dita B. Vizoso, Andrew D. Smith, Peter Ladurner, Lukas Scha?rer, W. Richard McCombie, Gregory J. Hannon, and Michael Schatz. The paper can be obtained online here.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Cold Spring Harbor Laboratory
The Clone Age - Cloning, Stem Cells, Space Medicine






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





CLONE AGE
New material forges the way for 'stem cell factories'
Nottingham, UK (SPX) Jul 24, 2015
If you experience a major heart attack the damage could cost you around five billion heart cells. Future stem cell treatments will require this number and more to ensure those cells are replaced and improve your chances of survival. Experts at The University of Nottingham have discovered the first fully synthetic substrate with potential to grow billions of stem cells. The research, publis ... read more


CLONE AGE
NASA's LRO discovers Earth's pull is 'massaging' our moon

Moon's crust as fractured as can be

China aims to land Chang'e-4 probe on far side of moon

China Plans Lunar Rover For Far Side of Moon

CLONE AGE
Supervising two rovers from space

Team Continues to Operate Rover in RAM Mode

Ridley Scott's 'The Martian' takes off in Toronto

Mars Panorama from Curiosity Shows Petrified Sand Dunes

CLONE AGE
Making a difference with open source science equipment

NASA, Harmonic Launch First Non-Commercial UHD Channel in NAmerica

Russian cosmonaut back after record 879 days in space

New Life for Old Buddy: Russia Tests Renewed Soyuz-MS Spacecraft

CLONE AGE
Long March-2D carrier rocket blasts off in NW China

Progress for Tiangong 2

China rocket parts hit villager's home: police, media

China's "sky eyes" help protect world heritage Angkor Wat

CLONE AGE
US astronaut misses fresh air halfway through year-long mission

Andreas Mogensen lands after a busy mission on Space Station

ISS Crew Enjoy Kharcho Soup, Mare's Milk in Orbit

Slam dunk for Andreas in space controlling rover on ground

CLONE AGE
Russia successfully launches satellite with Proton rocket

SpaceX Signs New Commercial Launch Contracts

ILS announces one ILS Proton launch for HISPASAT in 2017

First Ever Launch Vehicle to Be Sent to Russia's New Spaceport in Siberia

CLONE AGE
Watching an exoplanet in motion around a distant star

Europlanet 2020 launches new era of planetary collaboration in Europe

Nearby Red Dwarfs Could Reveal Planet Secrets

Astronomers peer into the 'amniotic sac' of a planet-hosting star

CLONE AGE
'Lab-on-a-Chip' to cut costs of sophisticated tests for diseases and disorders

Physicists defy conventional wisdom to identify ferroelectric material

Engineers unlock remarkable 3-D vision from ordinary digital camera technology

Making 3-D objects disappear




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.