Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
Scientists offer explanation for electron heat loss in fusion plasma
by Staff Writers
Princeton NJ (SPX) Aug 05, 2015


This is PPPL Scientist Elena Belova. Image courtesy Elle Starkman/Princeton Plasma Physics Laboratory. For a larger version of this image please go here.

Creating controlled fusion energy entails many challenges, but one of the most basic is heating plasma - hot gas composed of electrons and charged atoms - to extremely high temperatures and then maintaining those temperatures.

Now scientist Elena Belova of the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) and a team of collaborators have proposed an explanation for why the hot plasma within fusion facilities called tokamaks sometimes fails to reach the required temperature, even as researchers pump beams of fast-moving neutral atoms into the plasma in an effort to make it hotter.

The results, published in June in Physical Review Letters, could lead to improved control of temperature in future fusion devices, including ITER, the international fusion facility under construction in France to demonstrate the feasibility of fusion power. This work was supported by the DOE Office of Science (Office of Fusion Energy Sciences).

The researchers focused on the puzzling tendency of electron heat to leak from the core of the plasma to the plasma's edge. "One of the largest remaining mysteries in plasma physics is how electron heat is transported out of plasma," said Jon Menard, program director for PPPL's major fusion experiment, the National Spherical Tokamak Experiment-Upgrade (NSTX-U), which is completing a $94 million upgrade.

Belova hit upon a possible answer while performing 3D simulations of past NSTX plasmas on computers at the National Energy Research Scientific Computing Center (NERSC), in Oakland, California. She saw that two kinds of waves found in fusion plasmas appear to form a chain that transfers the neutral-beam energy from the core of the plasma to the edge, where the heat dissipates.

While physicists have long known that the coupling between the two kinds of waves - known as compressional Alfven waves and kinetic Alfven waves (KAWs) - can lead to energy dissipation in plasmas, Belova's results were the first to demonstrate the process for beam-excited compressional Alfven eigenmodes (CAEs) in tokamaks.

Her simulations showed that when researchers try to heat the plasma by injecting beams of energetic deuterium, a form of hydrogen, the beams excite CAE waves in the plasma's core. Those waves then resonate with KAW waves, which occur primarily at the plasma's edge. As a result, the energy is transported from the injection site deep within the plasma to the plasma's edge.

"Originally, when scientists found that the electron temperature wouldn't go up with increased beam power, everybody assumed that the electrons were getting heated at the plasma's center and then were somehow losing that heat," Belova said. "Our explanation is different. We propose that part of the beam energy goes into CAEs and then to KAWs. The energy then dissipates at the plasma's edge."

The simulations provided a broad perspective. "In simulations you can look everywhere in a plasma," Belova said. "In the experiments, on the other hand, you are very limited in what and where you can measure inside the hot plasma."

Belova's findings reflect the growing collaboration between theoretical and experimental research at the Laboratory. Her results could enhance understanding of electron energy transport in experiments on the NSTX-U, said Amita Bhattarcharjee, head of the Theory Department at PPPL.

Belova plans to run more simulations to determine whether the mechanism she identified is the primary process that modifies the electron heating profile. She will also look for ways in which physicists can avoid this wave-induced change in the profile. In the meantime, she is driven by her desire to learn more physics. "We want to understand how these waves are excited by the beam ions," she said, "and how to avoid them in the experiments."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
DOE/Princeton Plasma Physics Laboratory
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
York scientists unlock secrets of stars through aluminium
York, UK (SPX) Aug 05, 2015
Physicists at the University of York have revealed a new understanding of nucleosynthesis in stars, providing insight into the role massive stars play in the evolution of the Milky Way and the origins of the Solar System. Radioactive aluminium (aluminium-26, or Al26) is an element that emits gamma radiation through its decay enabling astronomers to image its location in our galaxy. Studyin ... read more


TIME AND SPACE
From a million miles away, NASA camera shows moon crossing face of Earth

NASA Could Return Humans to the Moon by 2021

Smithsonian embraces crowdfunding to preserve lunar spacesuit

NASA Sets Sights on Robot-Built Moon Colony

TIME AND SPACE
New Online Exploring Tools Bring NASA's Journey to Mars to New Generation

Six scientists to spend 365 days in HI-SEAS simulated Mars trip

Buckingham astrobiologists to look for life on Mars

NASA Mars Orbiter Preparing for Mars Lander's 2016 Arrival

TIME AND SPACE
Spaceflight may increase susceptibility to inflammatory bowel disease

Third spaceflight for astronaut Paolo Nespoli

New rocket could one day launch flight to Europa

ISU Educates Future Space Leaders

TIME AND SPACE
China to deploy space-air-ground sensors for environment protection

Chinese earth station is for exclusively scientific and civilian purposes

Cooperation in satellite technology put Belgium, China to forefront

China set to bolster space, polar security

TIME AND SPACE
NASA signs $490 mn contract with Russia for ISS travel

NASA Renews $490Mln Contract With Russian Space Agency

Space Kombucha in the search for life and its origin

Political Tensions Have No Impact on Space Cooperation- Roscosmos

TIME AND SPACE
Payload checkout is advancing for Arianespace's September Soyuz flight

ILS concludes Proton launch failure investigation

India to launch 9 US satellites in 2015, 2016

Payload fit-check for next Ariane 5 mission

TIME AND SPACE
Scientists solve planetary ring riddle

Overselling NASA

Exoplanets 20/20: Looking Back to the Future

Study: All planetary rings governed by particle distribution principle

TIME AND SPACE
Satcoms Linking Rural Schools in South Africa and Italy

Metal organic frameworks show unexpected flexibility

Yarn from slaughterhouse waste

Photoaging could reverse negative impact of ultraviolet radiation




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.