. 24/7 Space News .
STELLAR CHEMISTRY
Scientists find further evidence for a population of dark matter deficient dwarf galaxies
by Staff Writers
Beijing, China (SPX) Dec 10, 2019

This figure illustrates structure in the simulated universe, in a box 200 million light-years on each side. It is color coded, using black, green, yellow, pink and white to represent low- to high-density regions, respectively

Researchers from the National Astronomical Observatories of the Chinese Academy of Science (NAOC), Peking University and Tsinghua University have found a special population of dwarf galaxies that could mainly consist baryons within radii of up to tens of thousands of light-years. This contrasts with the normal expectation that such regions should instead be dominated by dark matter.

This study may challenge the formation theory of dwarf galaxies in the framework of standard cosmology and may provide new clues to the nature of dark matter. The results were published in Nature Astronomy on Nov. 26, 2019.

In standard cosmology, the Universe is dominated by cold dark matter and dark energy, while baryons only occupy 4.6% by mass. Galaxies form and evolve in systems dominated by dark matter (Fig. 1). In high-mass systems, the baryonic fraction may reach the universal value, i.e., 4.6%. In low-mass systems, the baryonic fraction may be much lower due to their shallow gravitational potential.

The satellite dwarf galaxies in our Local Group are found to be dominated by dark matter down to radii of a few thousand light-years. However, statistical studies of the dynamics of dwarf galaxies beyond the Local Group previously had been hampered by the extreme faintness of such systems.

Multi-wavelength data have recently made such studies possible, however.

By taking advantage of the release of 40% of the data from the Arecibo Legacy Fast (ALFA) catalogue and the Seventh Data Release of the Sloan Digital Sky Survey, a research group led by Prof. GUO Qi from NAOC has found 19 dwarf galaxies that are dominated by baryons at radii far beyond their half-optical radii ( typically a few thousand light-years).

Normally, the dark matter-to-baryon mass ratio reaches 10-1000 for "typical" dwarf galaxies. Notably, most of these baryon-dominated dwarf galaxies are isolated galaxies, free from the influence of nearby bright galaxies and high-density environments.

"This result is very hard to explain using the standard galaxy formation model in the context of concordance cosmology, and thus encourages people to revisit the nature of dark matter," said Prof. GUO.

Instead of the standard cold dark matter model, a warm dark matter model or fuzzy dark matter model might be more in line with the formation of this particular population of dwarf galaxies. Alternatively, some extreme astrophysical processes may also be responsible.

Further observations are required to understand the formation of these particular baryon-dominated dwarf galaxies.

Research paper


Related Links
Chinese Academy of Sciences Headquarters
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
New approach in hunt for dark matter
Mainz, Germany (SPX) Nov 15, 2019
A study that takes a novel approach to the search for dark matter has been performed by the BASE Collaboration at CERN working together with a team at the PRISMA+ Cluster of Excellence at Johannes Gutenberg University Mainz (JGU). For the first time the researchers are exploring how dark matter influences antimatter instead of standard matter. Their findings are now published in the latest edition of eminent scientific journal Nature. They are the results of research undertaken by scientists at Ja ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
NASA awards UbiQD 2nd contract to "Tailor the Solar Spectrum for Enhanced Crop Yield for Space Missions"

AFRL technology set for launch to International Space Station

SpaceX launches 19th cargo mission to space station with robot aboard

ISS-bound Progress MS-13 lifts off from Baikonur Cosmodrome

STELLAR CHEMISTRY
SpaceX Dragon docks with International Space Station

NASA will push exploration rocket test hardware beyond its limits

NASA break SLS tank to test extreme limits

Aerojet Rocketdyne Huntsville Site Set for Large Solid Rocket Motor Production

STELLAR CHEMISTRY
Solving fossil mystery could aid quest for ancient life on Mars

Global storms on Mars launch dust towers into the sky

Glaciers as landscape sculptors - the mesas of Deuteronilus Mensae

NASA updates Mars 2020 Mission Environmental Review

STELLAR CHEMISTRY
China sends six satellites into orbit with single rocket

China launches satellite service platform

China plans to complete space station construction around 2022: expert

China conducts hovering and obstacle avoidance test in public for first Mars lander mission

STELLAR CHEMISTRY
SpaceChain sends blockchain tech to ISS

Nilesat-301 satellite to be built by Thales Alenia Space

SpaceChain sends blockchain tech to ISS for Fintech market

First launch of UK's OneWeb satellites from Baikonur now set for 30 Jan

STELLAR CHEMISTRY
SN Now: The Final Installment of SCaN Now

Life of a foam

L3 technologies receives $37.5M for precision aiming lasers

UV-Bodyguard by ajuma - sophisticated technology to prevent sunburn

STELLAR CHEMISTRY
Exoplanet axis study boosts hopes of complex life, just not next door

Hidden giant planet around tiny white dwarf star

Animal embryos evolved before animals

Signs of life: New field guide aids astronomers' search

STELLAR CHEMISTRY
The PI's Perspective: What a Year, What a Decade!

Reports of Jupiter's Great Red Spot demise greatly exaggerated

Aquatic rover goes for a drive under the ice

NASA scientists confirm water vapor on Europa









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.