Subscribe free to our newsletters via your
. 24/7 Space News .




CLIMATE SCIENCE
Scientists discover new variability in iron supply to the oceans with climate implications
by Staff Writers
Southampton, UK (SPX) Jul 23, 2013


This image shows a phytoplankton bloom in western South Atlantic Ocean. Credit: NASA.

supply of dissolved iron to oceans around continental shelves has been found to be more variable by region than previously believed - with implications for future climate prediction.

Iron is key to the removal of carbon dioxide from the Earth's atmosphere as it promotes the growth of microscopic marine plants (phytoplankton), which mop up the greenhouse gas and lock it away in the ocean.

A new study, led by researchers based at the National Oceanography Centre Southampton, has found that the amount of dissolved iron released into the ocean from continental margins displays variability not currently captured by ocean-climate prediction models. This could alter predictions of future climate change because iron, a key micronutrient, plays an important role in the global carbon cycle.

Previously assumed to reflect rates of microbial activity, the study found that the amount of iron leaking from continental margins (the seafloor sediments close to continents) is actually far more varied between regions because of local differences in weathering and erosion on land. The results of the study are published this week in Nature Communications.

"Iron acts like a giant lever on marine life storing carbon," says Dr Will Homoky, lead author and postdoctoral research fellow at University of Southampton Ocean and Earth Science, which is based at the Centre. "It switches on growth of microscopic marine plants, which extract carbon dioxide from our atmosphere and lock it away in the ocean."

Continental margins are a major source of dissolved iron to the oceans and therefore an important factor for climate prediction models. But until now, measurements have only been taken in a limited number of regions across the globe, all of which have been characterised by low oxygen levels and high sedimentation rates. The present study focussed on a region with contrasting environmental conditions - in Atlantic waters off the coast of South Africa.

"We were keen to measure iron from this region because it is so different to areas studied before. The seawater here contains more oxygen, and sediments accumulate much more slowly on the seafloor because the region is drier and geologically less active," says Professor Rachel Mills, co-author at the University of Southampton.

The team found substantially smaller amounts of iron being supplied to seawater than measured anywhere before - challenging preconceptions of iron supply across the globe.

The researchers also identified that there are two different mechanisms by which rocks are dissolving on the seafloor. They did this by measuring the isotopic composition of the iron, using a technique developed with co-authors based at the University of South Carolina.

"We already knew that microbial processes dissolve iron in rocks and minerals," says Dr Homoky, "but now we find that rocks also dissolve passively and release iron to seawater. A bit like sugar dissolving in a cup of tea.

"The fact that we have found a new mechanism makes us question how much iron is leaking out from other areas of the ocean floor. If certain rocks are going to dissolve irrespective of microbial processes, suddenly there are whole regions that might be supplying iron that are presently unaccounted for."

But how much can this one factor really affect changes in the Earth's climate? Dr Homoky explains: "Model simulations indicate that the presence or absence of iron supply from continental margins may be enough to drive Earth's transition between glacial and interglacial periods," he says. "Therefore these findings could certainly have implications for global climate modelling - to what extent, is yet to be determined.

"Our study shows that the amount of iron coming off different margins might vary by up to ten thousand times. In some regions we are probably overestimating - and in others underestimating - the influence of sedimentary iron supply on the ocean's carbon cycle. The goal now is to refine this knowledge to improve ocean-climate models."

Homoky, W. B. et al. Distinct iron isotopic signatures and supply from marine sediment dissolution. Nat. Commun. 4:2143 doi: 10.1038/ncomms3143 (2013).

.


Related Links
National Oceanography Centre, Southampton
GEOTRACES
Climate Science News - Modeling, Mitigation Adaptation






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CLIMATE SCIENCE
eWarming of deep oceans said holding climate change steady
London (UPI) Jul 22, 2013
Heat absorbed by the deep oceans has brought a slowing of global warming in the last five years, U.K. scientists say, but the long-term trend is still upward. Oceans absorb large amounts of the Earth's heat, a phenomenon that goes on over long periods as heat from the ocean surface is gradually circulated to the seas' deeper regions, they said. Global temperatures have remained l ... read more


CLIMATE SCIENCE
First-ever lunar south pole mission could be attempted by 2016

Engine recovered from Atlantic confirmed as Apollo 11 unit

Soviet Moon rover moved farther than thought

Scientist says Earth may once have been orbited by two moons

CLIMATE SCIENCE
Ancient snowfall likely carved Martian valleys

Reports Detail Mars Rover Clues to Atmosphere's Past

MAVEN Spectrometer Opens Window to Red Planet's Past

Curiosity Mars Rover Passes Kilometer of Driving

CLIMATE SCIENCE
Boeing CST-100 Spacecraft Model Passes Water-Recovery Tests

NASA announces funding for far-out space research

The Zero Gravity Coffee Cup

Outside View: Future science fiction

CLIMATE SCIENCE
China launches three experimental satellites

Medical quarantine over for Shenzhou-10 astronauts

China's astronauts ready for longer missions

Chinese probe reaches record height in space travel

CLIMATE SCIENCE
NASA launches new probe of spacesuit failure

Space Station ARISS Software Upgraded by Student For Students

Astronaut's helmet leak forces abrupt end to spacewalk

NASA puzzled as astronaut's helmet leak halts spacewalk

CLIMATE SCIENCE
Both payloads for Arianespace's next Ariane 5 flight are now mated to the launcher

SpaceX Testing Complete at NASA Glenn's Renovated Facility

Alphasat stacks up

ESA Signs Off On Baseline Configuration Of Ariane 6

CLIMATE SCIENCE
Snow falling around infant solar system

'Water-Trapped' Worlds

A snow line in an infant solar system: Astronomers take first images

In the Zone: The Search For Habitable Planets

CLIMATE SCIENCE
Magnets make droplets dance

Delayed Shield game gadget to hit market on July 31

World's cheapest computer gets millions tinkering

Thyroid cancer risk for 2,000 Fukushima workers: TEPCO




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement