Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



TECH SPACE
Scientists create new form of matter, a time crystal
by Staff Writers
Austin TX (SPX) Mar 09, 2017


Researchers have created the world's first time crystal, an exotic state of matter that combines the rigidity of an ordinary crystal with a regular rhythm in time. Image courtesy E. Edwards and JQI.

Salt, snowflakes and diamonds are all crystals, meaning their atoms are arranged in 3-D patterns that repeat. Today scientists are reporting in the journal Nature on the creation of a phase of matter, dubbed a time crystal, in which atoms move in a pattern that repeats in time rather than in space.

The atoms in a time crystal never settle down into what's known as thermal equilibrium, a state in which they all have the same amount of heat. It's one of the first examples of a broad new class of matter, called nonequilibrium phases, that have been predicted but until now have remained out of reach. Like explorers stepping onto an uncharted continent, physicists are eager to explore this exotic new realm.

"This opens the door to a whole new world of nonequilibrium phases," says Andrew Potter, an assistant professor of physics at The University of Texas at Austin. "We've taken these theoretical ideas that we've been poking around for the last couple of years and actually built it in the laboratory. Hopefully, this is just the first example of these, with many more to come."

Some of these nonequilibrium phases of matter may prove useful for storing or transferring information in quantum computers.

Potter is part of the team led by researchers at the University of Maryland who successfully created the first time crystal from ions, or electrically charged atoms, of the element ytterbium. By applying just the right electrical field, the researchers levitated 10 of these ions above a surface like a magician's assistant. Next, they whacked the atoms with a laser pulse, causing them to flip head over heels. Then they hit them again and again in a regular rhythm. That set up a pattern of flips that repeated in time.

Crucially, Potter noted, the pattern of atom flips repeated only half as fast as the laser pulses. This would be like pounding on a bunch of piano keys twice a second and notes coming out only once a second. This weird quantum behavior was a signature that he and his colleagues predicted, and helped confirm that the result was indeed a time crystal.

The team also consists of researchers at the National Institute of Standards and Technology, the University of California, Berkeley and Harvard University, in addition to the University of Maryland and UT Austin.

Frank Wilczek, a Nobel Prize-winning physicist at the Massachusetts Institute of Technology, was teaching a class about crystals in 2012 when he wondered whether a phase of matter could be created such that its atoms move in a pattern that repeats in time, rather than just in space.

Potter and his colleague Norman Yao at UC Berkeley created a recipe for building such a time crystal and developed ways to confirm that, once you had built such a crystal, it was in fact the real deal. That theoretical work was announced publically last August and then published in January in the journal Physical Review Letters.

A team led by Chris Monroe of the University of Maryland in College Park built a time crystal, and Potter and Yao helped confirm that it indeed had the properties they predicted. The team announced that breakthrough - constructing a working time crystal - last September and is publishing the full, peer-reviewed description this week in Nature.

A team led by Mikhail Lukin at Harvard University created a second time crystal a month after the first team, in that case, from a diamond.

Research paper

TECH SPACE
Coffee-ring effect leads to crystallization control
Thuwal, Saudi Arabia (SPX) Mar 07, 2017
A chance observation of crystals forming a mark that resembled the stain of a coffee cup left on a table has led to the growth of customized polycrystals with implications for faster and more versatile semiconductors. Thin-film semiconductors are the foundation of a vast array of electronic and optoelectronic devices. They are generally fabricated by crystallization processes that yield polycrys ... read more

Related Links
University of Texas at Austin
Space Technology News - Applications and Research

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment on this article using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Orion spacecraft achieves key safety milestone

The NASA Imager Dentists Use Daily

Marshall shakes, packs, ships and tracks NASA payloads

NASA and SpaceX gives ASU a competitive edge in technological innovation

TECH SPACE
SpaceX says it will fly civilians to the moon next year

Moon tourists risk rough ride, experts say

Flight Hardware for NASA's Space Launch System on Its Way to Cape

Spacex To Send Privately Crewed Dragon Spacecraft Beyond The Moon Next Year

TECH SPACE
NASA Orbiter Steers Clear of Mars Moon Phobos

Remnants of a mega-flood on Mars

Science checkout continues for ExoMars orbiter

NASA Explores Opportunity for Smaller Experiments to 'Hitch a Ride' to Mars

TECH SPACE
Thinking Big: China Hopes to Conduct 2nd Mission to Mars by 2030

China to Conduct Test Flight of CZ-8 Carrier Rocket by 2018

China to launch first high-throughput communications satellite in April

Chinese cargo spacecraft set for liftoff in April

TECH SPACE
OneWeb, Intelsat merge to advance satellite internet

GomSpace to supply satellites for Sky and Space Global constellation

Kacific places order with Boeing for a high throughput satellite

ESA affirms Open Access policy for images, videos and data

TECH SPACE
Coffee-ring effect leads to crystallization control

3-D printing with plants

Researchers remotely control sequence in which 2-D sheets fold into 3-D structures

Scientists demonstrate improved particle warning to protect astronauts

TECH SPACE
Faraway Planet Systems Are Shaped Like the Solar System

Biochemical 'fossil' shows how life may have emerged without phosphate

The missing link in how planets form

Volcanic hydrogen spurs chances of finding exoplanet life

TECH SPACE
Juno to remain in current orbit at Jupiter

Europa Flyby Mission Moves into Design Phase

NASA receives science report on Europa lander concept

New Horizons Refines Course for Next Flyby




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement