. 24/7 Space News .
NANO TECH
Scientists create a nanomaterial that is both twisted and untwisted at the same time
by Staff Writers
Bath UK (SPX) Sep 23, 2019

A nanomaterial developed at University of Bath allows for incredibly sensitive detection of the direction molecules twist using laser light.

A new nanomaterial developed by scientists at the University of Bath could solve a conundrum faced by scientists probing some of the most promising types of future pharmaceuticals.

Scientists who study the nanoscale - with molecules and materials 10,000 smaller than a pinhead - need to be able to test the way that some molecules twist, known as their chirality, because mirror image molecules with the same structure can have very different properties. For instance one kind of molecule smells of lemons when it twists in one direction, and oranges when twisted the other way.

Detecting these twists is especially important in some high-value industries such as pharmaceuticals, perfumes, food additives and pesticides.

Recently, a new class of nanoscale materials have been developed to help distinguish the chirality of molecules. These so-called 'nanomaterials' usually consist of tiny twisted metal wires, that are chiral themselves.

However, it has become very hard to distinguish the twist of the nanomaterials from the twist of the molecules they are supposed to help study.

To solve this problem the team from the University of Bath's Department of Physics created a nanomaterial that is both twisted and it is not. This nanomaterial has equal number of opposite twists - meaning they cancel each other out. Usually, upon interacting with light, such material appears without any twist; how then could it be optimised to interact with molecules?

Using a mathematical analysis of the material's symmetry properties, the team discovered a few special cases, which can bring the 'hidden' twist to light and allow very sensitive detection of chirality in molecules.

Lead author Professor Ventsislav Valev, from the University of Bath Department of Physics, said: "This work removes an important roadblock for the entire research field and paves the way to ultra-sensitive detection of chirality in molecules, using nanomaterials."

PhD student Alex Murphy, who worked on the study, said: "Molecular chirality is an amazing property to study. You can smell chirality, since the same but oppositely twisted molecules smell of lemons and oranges.

"You can taste chirality, since one twist of Aspartame is sweet and the other is tasteless. You can feel chirality, since one twist of menthol gives a cool sensation to the skin while the other does not. You touch chirality expressed in the twist of seashells. And it is great to see chirality expressed in its interactions with the colours of laser light."

Research paper


Related Links
University of Bath
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


NANO TECH
Physicists create world's smallest engine
Dublin, Ireland (SPX) Aug 23, 2019
Theoretical physicists at Trinity College Dublin are among an international collaboration that has built the world's smallest engine - which, as a single calcium ion, is approximately ten billion times smaller than a car engine. Work performed by Professor John Goold's QuSys group in Trinity's School of Physics describes the science behind this tiny motor. The research, published in international journal Physical Review Letters, explains how random fluctuations affect the operation of microscopic ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

NANO TECH
France pledges billions in fight to halt start-up drain

Testing and Training on the Boeing Starliner

Malaysia Interested in Having Access to Russian Space Tech, Prime Minister Says

Natalie Portman joins Hollywood space race with 'Lucy in the Sky'

NANO TECH
China to launch Third Long March 5 by year end

Roscosmos to Build Cheap Soyuz-2M Rocket for Commercial Satellites Launch Service

Engine Section for NASA's SLS Rocket Moved for Final Integration

Fire forces Japan to cancel rocket launch to ISS

NANO TECH
Mars 2020 Spacecraft Comes Full Circle

NASA Research Gives New Insight into How Much Atmosphere Mars Lost

'Martian CSI' Sheds Light on How Asteroid Impacts Generated Running Water Under Red Planet

NASA engineers attach Mars Helicopter to Mars 2020 rover

NANO TECH
China's KZ-1A rocket launches two satellites

China's newly launched communication satellite suffers abnormality

China launches first private rocket capable of carrying satellites

Chinese scientists say goodbye to Tiangong-2

NANO TECH
Private Chinese firms tapping international space market

Iridium and Thales Expand Partnership to Deliver Aircraft Connectivity Services

ESA re-routes satellite to avoid SpaceX collision risk

Cutting-edge Chinese satellite malfunctions after launch

NANO TECH
Bolivia, with huge untapped reserves, gears up for soaring lithium demand

Spider silk, wood combination replicates material advantages of plastic

Shaken but not stirred: Konnect satellite completes vibration tests

China data centres set to consume more power than Australia: report

NANO TECH
First water detected on potentially 'habitable' planet

Water detected on an exoplanet located in its star's habitable zone

How to Spin a Disk Around Young Protostars

Potassium Detected in an Exoplanet Atmosphere

NANO TECH
Storms on Jupiter are disturbing the planet's colorful belts

ALMA shows what's inside Jupiter's storms

Young Jupiter was smacked head-on by massive newborn planet

Mission to Jupiter's icy moon confirmed









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.