Subscribe free to our newsletters via your
. 24/7 Space News .


Subscribe free to our newsletters via your




















TECH SPACE
Scientists bridge different materials by design
by Staff Writers
Liverpool, UK (SPX) Feb 09, 2016


The arrangement of chemical bonds in different materials can make it hard to put them together to form a clean interface, like the green and red blocks in the figure. It is possible to construct a flexible block, which will fit with both materials, and bridge the gap between them, like the blue blocks bridge the gap between the red and green ones. Image courtesy University of Liverpool. For a larger version of this image please go here.

Scientists at the University of Liverpool have shown that it is possible to design and construct interfaces between materials with different structures by making a bridge between them. The advance is reported in Nature Chemistry.

It is usually possible to make well-controlled interfaces when two materials have similar crystal structures, yet the ability to combine materials with different crystal structures has lacked the accurate design rules that increasingly exists in other areas of materials chemistry.

The design and formation of an atomic-scale bridge between different materials will lead to new and improved physical properties, opening the path to new information technology and energy science applications amongst a myriad of science and engineering possibilities - for example, atoms could move faster at the interface between the materials, enabling better batteries and fuel cells.

Many devices, for example a transistor or blue LED, rely on the creation of very clean, well-ordered interfaces between different materials to work.

Liverpool Materials Chemist, Professor Matthew Rosseinsky, said: "When we try to fit materials together at the atomic scale, we are used to using the sizes of the atoms to decide which combinations of materials will "work" i.e. will produce a continuous well-ordered interface.

"The project team added in consideration of the chemical bonding around the atoms involved, as well as their sizes, as a key design step. This allowed the selection of two materials with different crystal structures yet with sufficient chemical flexibility to grow in a completely ordered manner throughout the interface between them.

"This was achieved by the formation of a unique ordered structure at the interface which did not correspond to either material but contained features of both of them, an atomic-scale bridge."

The paper, 'Interface control by chemical and dimensional matching in an oxide heterostructure' is published in Nature Chemistry and involves researchers at the University of Antwerp.

.


Related Links
University of Liverpool
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Extracting rare-earth elements from coal could soon be economical in US
University Park PA (SPX) Feb 08, 2016
The U.S. could soon decrease its dependence on importing valuable rare-earth elements that are widely used in many industries, according to a team of Penn State and U.S. Department of Energy researchers who found a cost-effective and environmentally friendly way to extract these metals from coal byproducts. Rare-earth elements are a set of seventeen metals - such as scandium, yttrium, lant ... read more


TECH SPACE
Edgar Mitchell, astronaut who walked on Moon, dead at 85

The forgotten moon landing that paved the way for today's space adventures

ASU satellite selected for NASA Space Launch System's first flight

Lunar Flashlight selected to fly as secondary payload on Exploration Mission-1

TECH SPACE
Opportunity climbing steeper slopes to reach science targets

Opportunity Reaches 12 Years on Mars!

4 people to live in an HERA habitat for 30 days at JSC

Sandy Selfie Sent from NASA Mars Rover

TECH SPACE
NASA tests solar sail deployment for asteroid-surveying CubeSat NEA Scout

Mars or the Moon

The Orion Crew Module Pressure Vessel Ready For Testing

Astronaut rescue exercise proves Det. 3 command, control ready to support DoD, NASA

TECH SPACE
China Conducts Final Tests on Most Powerful Homegrown Rocket

Last Launch for Long March 2F/G

China aims for the Moon with new rockets

China shoots for first landing on far side of the moon

TECH SPACE
Russia to Deliver Three Advanced Spacesuits to ISS in 2016

Russians spacewalk to retrieve biological samples

Russian spacewalk marks end of ESA's exposed space chemistry

New Tool Provides Successful Visual Inspection of ISS Robot Arm

TECH SPACE
SpaceX Conducts Hover Tests

SES-9 Launch Targeting Late February

Space Launch System's first flight will launch small Sci-Tech cubesats

Initial launcher assembly clears Ariane 5 for its payload integration process

TECH SPACE
Earth-like planets have Earth-like interiors

The frigid Flying Saucer

Astronomers discover largest solar system

Lonely Planet Finds a Mum a Trillion Km Away

TECH SPACE
Russia to Debut 3D Printed Armata Tank

Metal oxide sandwiches: New option to manipulate properties of interfaces

A fast solidification process makes material crackle

Researchers discover new phase of boron nitride and a new way to create pure c-BN




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.