Subscribe free to our newsletters via your
. 24/7 Space News .




WATER WORLD
Scientists apply biomedical technique to reveal changes within the body of the ocean
by Staff Writers
Woods Hole MA (SPX) Sep 10, 2014


The scientists used a CTD (conductivity, temperature, depth) rosette to collect water samples during a research cruise in October 2011 along a 2,500-mile stretch in the Pacific Ocean, from Hawaii to Samoa. The transect cut across regions with widely different concentrations of nutrients, from areas rich in iron to the north to areas near the equator that are rich in phosphorus and nitrogen but devoid of iron. Image courtesy Brian Dimento, University of Connecticut.

For decades, medical researchers have sought new methods to diagnose how different types of cells and systems in the body are functioning. Now scientists have adapted an emerging biomedical technique to study the vast body of the ocean.

In a study published in the journal Science, a research team led by the Woods Hole Oceanographic Institution (WHOI) demonstrated that they can identify and measure proteins in the ocean, revealing how singled-celled marine organisms and ocean ecosystems are operating.

"Proteins are the molecules that catalyze the biochemical reactions happening in the organisms," said WHOI biogeochemist Mak Saito, the study's lead author.

"So instead of just measuring what species are where in the ocean, now we can effectively look inside those organisms and see what biochemical reactions they are performing in the face of various ocean conditions. It's a potentially powerful tool we can use to reveal the inner biochemical workings of organisms within ocean ecosystems and to start diagnosing how the oceans are responding to pollution, climate change, and other shifts."

The emerging biomedical technique of measuring proteins-a field called proteomics-builds upon the more familiar field of genomics, which has allowed scientists to detect and identify genes in cells. The new study is an initial demonstration that proteomic techniques can be applied to marine environments not only to identify the presence of proteins, but for the first time, to precisely count their numbers.

"We're leveraging that biomedical technology and translating it for use in the oceans," Saito said.

"The oceans are huge, and the issues that confront them have important impacts on society. Just the way you'd analyze proteins in a blood test to get information on what's happening inside your body, proteomics gives us a new way to begin to learn what's happening in ocean ecosystems, especially under multiple stresses and over large regions. With that information, we can identify changes, assess their impacts on society, and devise more effective strategies to adapt."

For their study, funded by the Gordon and Betty Moore Foundation and the National Science Foundation, the scientists collected water samples during a research cruise in October 2011 along a 2,500-mile stretch in the Pacific Ocean, from Hawaii to Samoa. The transect cut across regions with widely different concentrations of nutrients, from areas rich in iron to the north to areas near the equator that are rich in phosphorus and nitrogen but devoid of iron.

Back in the lab, the scientists analyzed the samples, focusing on proteins produced by one of the ocean's most abundant microbes, Prochlorococcus. They used mass spectrometers at WHOI to separate out individual proteins in the samples, identifying them by their peptide sequences.

In subsequent steps, the scientists demonstrated for the first time that they could precisely measure the amounts of individual proteins from individual species at various locations in the ocean.

The results painted a picture of what factors were controlling microbial photosynthesis and growth and how the microbes were responding to different conditions over a large geographic region of the ocean. For example, in the regions where nitrogen was limited, the scientists found high levels of a protein that transports urea, a form of nitrogen, which the microbes used to improve their ability to obtain the essential nutrient. Similarly, in areas where iron was deficient, they found an abundance of proteins that help grab and transport scarce iron.

"The microbes have biochemical systems that are ready to turn on to deal with low-nutrient situations," Saito said.

In areas in between, where the microbes were starved for both nutrients simultaneously, proteins detected by the scientists indicated which biochemical machinery the microbes used to most efficiently negotiate multiple environmental stresses. The protein measurements enabled scientists to map when, where, and how ecosystem changes occurred over broad areas of the ocean.

This study demonstrates how these targeted proteomic methods can provide new insights into how marine microbes respond to scarcity of nutrients in the oceans. By deploying these new diagnostic capabilities across the oceans and into the future, these methods could be used to understand how marine microbes - who form the base of marine food webs and are critical to regulating ocean chemistry - respond to the multitude of changes now occurring in the oceans.

"In our study, we measured about 20 of these biomarkers that indicate metabolism occurring in the ocean, but we can readily scale up that capacity to measure many more simultaneously," Saito said. "Here at the Woods Hole Oceanographic, we're building an oceanic proteomic capability, which will include sampling with ocean-going robots, to allow us to diagnose the inner workings of ocean ecosystems and understand how they respond to global changes."

.


Related Links
Woods Hole Oceanographic Institution
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








WATER WORLD
Florida man hooks massive shrimp-like creature off dock
Fort Pierce, Fla. (UPI) Sep 5, 2014
A man fishing off a dock in Florida this week reeled in a massive shrimp-like crustacean - stretching 18 inches in length and looking like it time-traveled from 500 million years ago. Another fisherman on the dock, Steve Bargeron, snapped some pictures and sent them to the Florida Fish and Wildlife Conservation Commission. Wildlife officials there have not yet been able to determine ex ... read more


WATER WORLD
China Aims for the Moon, Plans to Bring Back Lunar Soil

Electric Sparks May Alter Evolution of Lunar Soil

China to test recoverable moon orbiter

China to send orbiter to moon and back

WATER WORLD
Opportunity Flash-Memory Reformat Planned

Memory Reformat Planned for Opportunity Mars Rover

Scientist uncovers red planet's climate history in unique meteorite

A Salty, Martian Meteorite Offers Clues to Habitability

WATER WORLD
Aurora Season Has Started

Russian, US Scientists to Prepare Astronauts for Extreme Situations in Space

Russia's Space Geckos Die Due to Technical Glitch Two Days Before Landing

US to Stop Using Soyuz Spacecraft, Invest in Domestic Private Space Industry

WATER WORLD
China launches two satellites via one rocket

China Sends Life to Moon

Same-beam VLBI Tech monitors Chang'E-3 movement on moon

China Sends Remote-Sensing Satellite into Orbit

WATER WORLD
Expedition 40 Heads Into Final Week on ISS

3-D Printer Could Turn Space Station into 'Machine Shop'

Russia May Continue ISS Work Beyond 2020

Science and Departure Preps for Station Crew

WATER WORLD
Sea Launch Takes Proactive Steps to Address Manifest Gap

SpaceX rocket explodes during test flight

Russian Cosmonauts Carry Out Science-Oriented Spacewalk Outside ISS

Optus 10 delivered to French Guiana for Ariane 5 Sept launch

WATER WORLD
Orion Rocks! Pebble-Size Particles May Jump-Start Planet Formation

Rotation of Planets Influences Habitability

Planet-like object may have spent its youth as hot as a star

Young binary star system may form planets with weird and wild orbits

WATER WORLD
Artificial membranes on silicon

Ultra-thin Detector Captures Unprecedented Range of Light

Grooving Crystal Surfaces Repel Water

A Metallic Alloy That is Tough and Ductile at Cryogenic Temperatures




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.