Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
Scientists Hope to Get Glimpse of Adolescent Universe from Revolutionary Instrument-on-a-Chip
by Lori Keesey for Goddard Space Flight Center
Greenbelt MD (SPX) Jul 08, 2011


The MicroSpec instrument (onto a silicon wafer measuring just four inches) could provide a picture of how the cosmos developed into the kind of place that could support life like that found on Earth.

Scientists know what the universe looked like when it was a baby. They know what it looks like today. What they don't know is how it looked in its youth. Thanks to technological advances, however, scientists hope to complete the photo album and provide a picture of how the cosmos developed into the kind of place that could support life like that found on Earth.

They plan to gather these never-before-obtained insights with a potentially "game-changing" instrument that is expected to be 10,000 times more sensitive than the current state-of-the-art.

The instrument is being designed to gather data of objects so distant from Earth that they no longer can be observed in visible light, only in the infrared bands of the electromagnetic spectrum. In particular, this instrument, called a spectrometer, will measure the properties of the infrared light to identify the object's composition and other physical properties.

Just as impressive, the aptly named MicroSpec would be able to perform these highly sensitive observations from a very small platform - so small, in fact, that all its components would fit onto a silicon wafer measuring just four inches in diameter.

Now under development by engineers and scientists at the Goddard Space Flight Center in Greenbelt, Md., the instrument is a strong contender for future flight missions in astrophysics and Earth science, said astrophysicist Harvey Moseley, who is leading the instrument-development effort. "It's quite a new and, we think, revolutionary concept," he said. "If we can prove it, everyone will want it."

Stars to Hemoglobin
Although the technology could help answer a plethora of science questions, it is ideally suited for studying the evolution of the universe and by extension, humanity's place in it.

Past NASA missions, including the Goddard-developed Cosmic Background Explorer and the Wilkinson Microwave Anistropy Probe, studied the infant universe. They gathered information about the primordial light created during the universe's creation. Both detected tiny temperature differences, which pointed to density differences that ultimately gave rise to the first stars and galaxies formed 400,000 million years after the Big Bang.

However, scientists have yet to study these objects with great precision. They also have not studied light emitted by the life-sustaining elements created in these first stars and later distributed across the universe in stellar explosions.

"Right after the Big Bang, the only elements that were really present in any abundance were hydrogen and helium," Moseley said. "The formation of stars and the nuclear reaction that took place inside these first stars have created essentially all the elements that constitute the things that we see around here - the carbon in our bodies and the iron and hemoglobin in our blood. All these elements were formed in the many generations of stars that have been born and have died since the Big Bang."

By building an instrument like MicroSpec, and studying this specific era in the universe's nearly 14-billion-year history, scientists will "get a very clear picture of how the universe developed into the kind of place that could support life like us," Moseley added.

Unprecedented Instrument
Not only is the science unprecedented, so is the instrument, said Wen-Ting Hsieh, a Goddard Detector Development Laboratory engineer who has been working with Moseley since 2009 to advance the technology in preparation for a future mission. "The most important thing is it is small and it's super-sensitive."

In essence, Moseley, Hsieh, and their NASA Jet Propulsion Laboratory and CalTech University collaborators have found a way to dramatically shrink the size of the instrument. Compared with traditional spectrometers, which typically are table sized, the entire MicroSpec package of components, including its detectors, optics, and filters, would all be arranged on a thin silicon wafer measuring about 400 microns in thickness - four times the width of a human hair - and four inches in diameter.

"The idea was to get everything closely integrated and you get devices that are higher performing," said Carl Stahle, a Goddard technologist and the new business lead for the Instrument Systems and Technology Division at Goddard. And because the components are assembled on silicon, MicroSpec can be mass-produced, just like the silicon chips used in computers and other electronic equipment.

Therefore, NASA could produce multiple devices and assemble them as one compact instrument. In addition to providing increased sensitivity, MicroSpec would reduce the amount of time to observe objects in the sky because more light-detection capabilities would be built into the instrument. "The key is understanding what you can do on the silicon wafer. That's your instrument on a chip," Stahle explained.

Also contributing to MicroSpec's increased sensitivity - estimated to be 10,000 times better than current state-of-the-art instruments - is the degree to which it would be cooled. To detect far infrared light, instruments must be cooled to frigid temperatures to prevent instrument-generated heat from swamping the faint infrared signal.

Therefore, the colder the instrument, the better the signal it receives. Moseley and team plan to employ an advanced Goddard-developed cooling system that would chill MicroSpec to just a tenth of a degree above absolute zero (-459.67 degrees Fahrenheit).

The future looks good for MicroSpec, Stahle said. Its sensitivity and small size make it suitable for all types of missions, everything from large observatories, like the Hubble Space Telescope, to suborbital missions carried out on balloons and aircraft.

"It's very flexible, adaptable. Any time we can get a factor-of-10 improvement in power, mass, and volume, we think it's great. But this instrument is promising orders of magnitude performance. That's almost unheard of. I think anyone would say that's extraordinary."

.


Related Links
-
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
Cluster observes jet braking and plasma heating
Paris, France (ESA) Jul 05, 2011
High speed plasma flows, often referred to as jets, are extremely common across the Universe. Such jets are observed in Earth's magnetosphere, in solar flares, and near various objects powered by black holes. New insights into the processes that modify these streams of ionised particles have been provided by rare in situ measurements of plasma flows made by ESA's Cluster spacecraft. Most v ... read more


STELLAR CHEMISTRY
Marshall Center's Bassler Leads NASA Robotic Lander Work

NASA puts space probe into lunar orbit

ARTEMIS Spacecraft Prepare for Lunar Orbit

LRO Showing Us the Moon as Never Before

STELLAR CHEMISTRY
Two Possible Sites for Next Mars Rover

Scientists uncover evidence of a wet Martian past in desert

NASA Research Offers New Prospect Of Water On Mars

New Animation Depicts Next Mars Rover in Action

STELLAR CHEMISTRY
Obama hails final shuttle flight, eyes Mars next

End of shuttle flights only a 'bottleneck'

NASA Langley Rockets to Kentucky for Summer Motion

Space technology 'on the NHS' and easier access to space

STELLAR CHEMISTRY
China launches experimental satellite

China to launch an experimental satellite in coming days

China to launch new communication satellite

China's second moon orbiter Chang'e-2 goes to outer space

STELLAR CHEMISTRY
Russia's Progress M-11M readjusts ISS orbit

Training for ISS flight operations

Space junk narrowly misses station

Improving Slumber on the Space Station With Sleep-Long

STELLAR CHEMISTRY
Arianespace to launch THOR 7 satellite for Telenor

Space X Dragon Spacecraft Returns To Florida

Arianespace Launch Postponed At Least 20 Days

Minotaur Rocket Launch from NASA Wallops Re-Scheduled

STELLAR CHEMISTRY
Microlensing Finds a Rocky Planet

A golden age of exoplanet discovery

CoRoT's new detections highlight diversity of exoplanets

Rage Against the Dying of the Light

STELLAR CHEMISTRY
"Civilization" lets Facebook players rule world

EU task force on raw materials sought

Apple fires back in patent war with Samsung

China accused of rushing bridge opening




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement