. 24/7 Space News .
SPACE TRAVEL
Scientists Can Now Recycle Water, Air, Fuel, Making Deep Space Travel Possible
by Staff Writers
Moscow (Sputnik) Jul 16, 2018

illustration only

According to a new study, scientists have cracked one of most challenging obstacles to deep space travel: how to ensure that astronauts have enough fuel, air and water for the trip. Their proposed method involves "photo catalysts" that can split or recombine water molecules.

The emptiness of space and the vast distances between locations pose huge and unique challenges to space travel. One of the biggest challenges is the need to either bring everything you'll require with you or to make it along the way.

The basic essentials of fuel, water and breathable air are also some of the hardest to guarantee, since every ounce of weight packed onto the spacecraft has to be moved and protected. What if, instead, there was a method of recycling and recombining them?

A possible solution to that problem is what a group of scientists who hail from the California Institute of Technology, the Free University of Berlin and the European Space Agency published in their study in Nature on July 10.

Water is made of hydrogen and oxygen atoms, elements that can be used for fuel and breathing, respectively. Separating water molecules into those elements is easier said than done, though.

There are two methods of doing that, both of which involve electricity.

Electrolysis is the easier way, a way we use on Earth already to make hydrogen for fuel cells. It involves running a current through water that contains a soluble electrolyte. However, electrolysis requires heavy and bulky equipment, which are the last things you want on a spacecraft.

But, if we could get it right, Charles W Dunnill of the University of Swansea, writing for The Conversation, suggests that we could literally use water as rocket fuel and transport "fuel" to space in the form of water, which would be much safer than putting explosives on top of a fire tower powered by more explosives.

Down here on Earth, hydrogen is increasingly being used as a clean fuel alternative to fossil fuels, although producing hydrogen cleanly in sufficient quantities as a fuel remains difficult, Technology Review reported in 2017.

The second method, and the subject of the study in question, is far more interesting. Photo catalysts absorb photons of light into a semiconductor material surrounded by water. The electricity in the photon kicks a nearby water molecule's electron out of the molecule, freeing it to go off and interact with other molecules' protons. When an electron and proton separate and form an atom by themselves, that's hydrogen, and when the hydrogen atom leaves the water molecule, it leaves behind two oxygen atoms - O2, the form of oxygen that we breathe.

Even cooler, the process can be reversed and used to form water molecules from air and hydrogen fuel. That means that all these things can be recycled for repeated uses or to make whichever the spacecraft needs at that time. It also means that all three items can be stored as a single, stable material: water.

And what's more, the equipment necessary for photocatalysis is much smaller and lighter than that needed for electrolysis.

?Researchers tested the viability of the process in a zero-G environment by dropping the entire experiment down a specialized "drop tower" that simulates microgravity. The problem to be overcome was bubbles - on Earth, gravity makes bubbles rise to the surface of the water, but in zero-G, the bubbles just sit there, which decreases efficiency.

A solution suggested by Dunnill is centrifugal forces generated by a spinning apparatus - if you've ever seen the film "2001: A Space Odyssey," you've seen one of these in action, generating some semblance of gravity for walking on a ship deep in space.

?The only remaining question is the source of the electricity for the process. In an interesting twist of fate, the day Nature published the study in question was also the anniversary of the day Albert Einstein received a Nobel Prize in 1923 for discovering the process that makes it possible: the photoelectric effect.

?Solar panels, also called photovoltaic cells, receive photons in sunlight and convert them into electricity. They are a common source of fuel for space travel as they are far more efficient in space than on Earth, but their utility decreases the further away from the sun you are.

In the past, spacecraft sent toward the outer reaches of the solar system have typically used radioisotope thermoelectric generators, which harness the heat energy released by decaying radioactive materials, as an alternative fuel.

However, newer craft have made use of more powerful and effective photovoltaic systems: The Juno probe, launched toward Jupiter in 2011, was the first to use solar power instead of RTG that deep in space; the Dawn spacecraft, sent to the Asteroid Belt to study the dwarf planets Vesta and Ceres in 2007, used solar power to fuel its ion engine, another first, which generates thrust by ionizing and accelerating gas and which requires electricity to function.


Related Links
Efficient solar hydrogen generation in microgravity environment
Space Tourism, Space Transport and Space Exploration News


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


SPACE TRAVEL
Making oxygen from water may pave way for long-distance space travel
Washington (UPI) Jul 10, 2018
Scientists have converted water into oxygen and hydrogen under microgravity conditions using only a semiconductor and sunlight. The technology could make long-distance space travel possible. Researchers have previously developed a variety of water-splitting technologies for use on Earth. One of the simplest methods is called photocatalysis - the technology uses photons, a semiconductor material and water to create electron-hole pairs. When the material absorbs photons, a free electron i ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SPACE TRAVEL
Orion Jettison Motor Ready for Crew Escape System Test

First space tourist flights could come in 2019

Testing Refines Requirements for Deep Space Habitat Design

Making oxygen from water may pave way for long-distance space travel

SPACE TRAVEL
Boeing, SpaceX unlikely to make manned flights to ISS in 2019

Experimental Spaceplane Program Successfully Completes Engine Test Series

Aurora Launch Services established in Alaska To provide responsive launch services

Multiple Launches in Two Weeks: Maximizing Vehicle Payload

SPACE TRAVEL
NASA May Have Destroyed Evidence for Organics on Mars 40 Years Ago

Scientists Discover "Ghost Dunes" On Mars

UK space sector set to benefit from new European Space Agency contract

Airbus wins two ESA studies for Mars Sample Return mission

SPACE TRAVEL
China readying for space station era: Yang Liwei

China launches new space science program

China Rising as Major Space Power

China launches new-tech experiment twin satellites

SPACE TRAVEL
EIB and ESA to cooperate on increasing investments in the European Space Sector

China Mulls Creation of Joint Global Satellite System with Russia

Laser-Based System is Set to Expand Space-to-Ground Communication

Yes we've got a space agency - but our industry needs 'Space Prize Australia'

SPACE TRAVEL
Astronomer Reveals When Soviet-Era Interplanetary Station Will Crash to Earth

Giant Satellite Fuel Tank Sets New Record for 3-D Printed Space Parts

New insights bolster Einstein's idea about how heat moves through solids

Spectral cloaking could make objects invisible under realistic conditions

SPACE TRAVEL
NASA's Webb Space Telescope to Inspect Atmospheres of Gas Giant Exoplanets

TESS Spacecraft Continues Testing Prior to First Observations

NASA's Kepler Spacecraft Pauses Science Observations to Download Science Data

Rocky planet neighbor looks familiar, but is not Earth's twin

SPACE TRAVEL
First Global Maps of Pluto and Charon from New Horizons Published

Europa's Ocean Ascending

Jupiter's moons create uniquely patterned aurora on the gas giant planet

'Cataclysmic' collision shaped Uranus' evolution









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.