Subscribe free to our newsletters via your
. 24/7 Space News .




ENERGY TECH
Saving energy: Increasing oil flow in the keystone pipeline with electric fields
by Staff Writers
Washington DC (SPX) Mar 02, 2015


File image.

Researchers have shown that a strong electric field applied to a section of the Keystone pipeline can smooth oil flow and yield significant pump energy savings.

Traditionally, pipeline oil is heated over several miles in order to reduce the oil's thickness (which is also known as viscosity), but this requires a large amount of energy and counter-productively increases turbulence within the flow.

In 2006 Rongjia Tao of Temple University in Pennsylvania proposed a more efficient way of improving flow rates by applying an electric field to the oil. The idea is to electrically align particles within the crude oil, which reduces viscosity and turbulence.

To test this, Tao collaborated with energy company Save The World Air, Inc. to develop an Applied Oil Technology (AOT) device that links to oil pipelines and produces an electric field along the direction of the oil flow.

Recent trials on oil pipelines in Wyoming and China verified that crude oil particles form short chains in an electric field. These chains reduce viscosity in the direction of flow to a minimum. At the same time the viscosity perpendicular to the flow increases, which helps suppress turbulence in the overall flow.

This past summer Tao and his colleagues also successfully tested the AOT device on a section of the Keystone pipeline near Wichita, Kansas.

"People were amazed at the energy savings when we first tested this device. They didn't initially understand the physics," said Tao.

"A second test with an independent company was arranged and found the same thing." Tests on a section of the Keystone pipeline found that the same flow rate could be achieved with a 75 percent reduction of pump power from 2.8 megawatts to 0.7 megawatts, thanks to the AOT device. The device itself uses 720 watts.

Once aligned, the oil retained its low viscosity and turbulence for more than 11 hours before returning to its original viscosity. But the process is repeatable and Tao and his colleagues envision AOT stations spaced along a pipeline, significantly reducing the energy necessary to transport oil.

This work was published in January 2015 in Physical Review E and Tao will present the additional Keystone pipeline test results at the American Physical Society March Meeting 2015 in San Antonio (March 2-6).

Previously Tao has also shown that the same technique applied with a magnetic field can reduce blood viscosity by 20 to 30 percent, published in 2011 in Physical Review E. With clinical trials, Tao says this could represent a future treatment for heart disease.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
American Physical Society
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





ENERGY TECH
CWRU researchers bring clean energy a step closer
Cleveland OH (SPX) Mar 02, 2015
For nearly half a century, scientists have been trying to replace precious metal catalysts in fuel cells. Now, for the first time, researchers at Case Western Reserve University have shown that an inexpensive metal-free catalyst performs as well as costly metal catalysts at speeding the oxygen reduction reaction in an acidic fuel cell. The carbon-based catalyst also corrodes less than meta ... read more


ENERGY TECH
Application of laser microprobe technology to Apollo samples refines lunar impact history

NASA releases video of the far side of the Moon

US Issuing Licenses for Mineral Mining on Moon

LRO finds lunar hydrogen more abundant on Moon's pole-facing slopes

ENERGY TECH
How Can We Protect Mars From Earth, While Searching For Life

The Search For Volcanic Eruptions On Mars Reaches The Next Level

Using Curiosity to Search for Life

Curiosity Self-Portrait at 'Mojave' Site on Mount Sharp

ENERGY TECH
Water pools in US astronaut's helmet after spacewalk

Korean tech start-ups offer life beyond Samsung

Fast visas and dim sum: Spain seeks to attract Chinese tourists

Industry: Risk aversion costs more than 'fast failure'

ENERGY TECH
More Astronauts for China

China launches the FY-2 08 meteorological satellite successfully

China's Long March puts satellite in orbit on 200th launch

Countdown to China's new space programs begins

ENERGY TECH
Russia to use International Space Station till 2024

NASA preparing to reassemble International Space Station

Spacewalking 'cable guys' wrap up work outside station

Space Station 3-D Printed Items, Seedlings Return in the Belly of a Dragon

ENERGY TECH
Soyuz Installed at Baikonur, Expected to Launch Wednesday

Leaders share messages, priorities at AFA Symposium

Moog offers "SoftRide" for enhanced spacecraft protection during launch

Russian-Ukrainian Satan Rocket to Launch South Korean Satellite as Planned

ENERGY TECH
The mystery of cosmic oceans and dunes

Laser 'ruler' holds promise for hunting exoplanets

Scientists predict earth-like planets around most stars

"Vulcan Planets" - Inside-Out Formation of Super-Earths

ENERGY TECH
Japan's NTT to buy German data centre operator: report

Moving molecule writes letters

New filter could advance terahertz data transmission

A simple way to make and reconfigure complex emulsions




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.