. 24/7 Space News .
EARTH OBSERVATION
Satellite and reanalysis data can substitute field observations over Asian water tower
by Staff Writers
Beijing, China (SPX) Nov 13, 2019

illustration only

The Tibetan Plateau (TP), known as the "Asian water tower" because of its huge storage of glacier, has a profound impact on local and downstream ecosystems. However, it is a challenge to establish and maintain in situ observations there due to the complex terrain. Scientists have found substitutes, thanks to satellite technology.

"Both satellite and reanalysis data sets are reliable to be substitutes to reproduce the water vapor features over TP, but the time scale should be considered." said Yin Zhao, a doctoral student from the Institute of Atmospheric Physics, Chinese Academy of Sciences. Zhao is the lead author of a recently published study in Climate Dynamics, along with her mentor Prof. Tianjun Zhou.

In sharp contrast with the importance of the giant water tower, sufficient in situ observations in the TP have been lacking due to the complex terrain. So satellite and reanalysis data sets become substitutes.

"In recent years, new versions of satellite data have been released and more reanalysis data sets have been updated. However, their quality needs to be evaluated, in particular, the reliability of existing satellite and reanalysis data products in capturing features of water vapor over TP", said Zhao.

After evaluating two NASA satellite data sets and seven widely used reanalysis data sets, they found both satellite data sets are reliable to reproduce the total column water vapor characteristics over TP and the difference between them is negligible, but the quality of reanalysis data sets varies with time scales considered.

"There is larger uncertainty among reanalysis data sets than that in satellite data sets because of the climate models, observations assimilated, and the assimilation process. So the quality of reanalysis data varies with the time scale considered and there is no perfect reanalysis data set", Prof. Zhou suggested using reanalysis data with caution.

The team therefore constructed a skill weighted ensemble mean of reanalysis data sets. Taken the spatially gridded data AIRS-only as reference, the lager weights are given to the higher quality reanalysis data set. This quality weighted ensemble data performs better than unweighted ensemble data and most of the single reanalysis data.

"Our analysis provides essential information about both the strengths and weakness of the current existing substitutes for the observational data, including the satellite products and reanalysis data. We recommend the application of the skill weighted ensemble mean of reanalysis data in future studies of water cycle over the TP, as it takes different time scale into account", said Zhao.

Research paper


Related Links
Institute of Atmospheric Physics, Chinese Academy of Sciences
Earth Observation News - Suppiliers, Technology and Application


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EARTH OBSERVATION
Changes in high-altitude winds over the South Pacific produce long-term effects
Bremerhaven, Germany (SPX) Nov 06, 2019
In the past million years, the high-altitude winds of the southern westerly wind belt, which spans nearly half the globe, didn't behave as uniformly over the Southern Pacific as previously assumed. Instead, they varied cyclically over periods of ca. 21,000 years. A new study has now confirmed close ties between the climate of the mid and high latitudes and that of the tropics in the South Pacific, which has consequences for the carbon budget of the Pacific Southern Ocean and the stability of the West An ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARTH OBSERVATION
Stand-up scientists use comedy to reach beyond the ivory tower

Are we set to taste space wine

Cygnus NG-12 cargo vehicle looking good on arrival

Paragon wins $2M contract under NASA Tipping Point Program

EARTH OBSERVATION
ATLAS Space Operations partners with Aevum to support ASLON-45 Space Lift

All four engines are attached to the SLS Core Stage for Artemis I

Not your average rocket launch; 45th SW supports Pegasus ICON

Advanced electric propulsion thruster for NASA's Gateway achieves full power demonstration

EARTH OBSERVATION
The Mars Mole and the challenging ground of the Red Planet

Mars Express completes 20,000 orbits around the Red Planet

Mars 2020 stands on its own six wheels

New selfie shows Curiosity, the Mars chemist

EARTH OBSERVATION
Beijing eyes creating first Earth-Moon economic zone

China conducts simulated weightlessness experiment for long-term stay in space

China plans more space science satellites

China's absence from global space conference due to "visa problem" causes concern

EARTH OBSERVATION
SpaceX faces competitors in race to build Internet-satellite constellation

SpaceX launches Starlink satellites with first reused rocket nose

European network of operations centres takes shape

D-Orbit signs contract with OneWeb in the frame of ESA project Sunrise

EARTH OBSERVATION
Plasma crystal research on the ISS

A cross-center collaboration leads to an aerogel based aircraft antenna

Resolve Optics contributes to space projects

Florida aerospace forum showcases expanding space-related technology

EARTH OBSERVATION
Life on Venus and the interplanetary transfer of biota from Earth

NASA instrument to probe planet clouds on European mission

Study refines which exoplanets are potentially habitable

The most spectacular celestial vision you'll never see

EARTH OBSERVATION
Juice cast in gold

SwRI to plan Pluto orbiter mission

NASA's Juno prepares to jump Jupiter's shadow

Huge Volcano on Jupiter's Moon Io Erupts on Regular Schedule









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.