Subscribe free to our newsletters via your
. 24/7 Space News .




SOLAR SCIENCE
SOHO and Hinode Offer New Insight Into Solar Eruptions
by Karen C. Fox
Greenbelt MD (SPX) Jan 28, 2015


Scientists are trying to understand the precise details of what creates giant explosions in the sun's atmosphere, such as this solar eruption from Oct. 14, 2012, as seen by NASA's Solar Dynamic Observatory. Image courtesy NASA/SDO/Amari.

The sun is home to the largest explosions in the solar system. For example, it regularly produces huge eruptions known as coronal mass ejections - when billions of tons of solar material erupt off the sun, spewing into space and racing toward the very edges of the solar system. Scientists know that these ejections, called CMEs, are caused by magnetic energy building up on the sun, which suddenly releases. But the details of what causes the build up and triggers the release are not precisely understood.

A journal paper in Nature magazine on Oct. 23, 2014, used data from NASA missions to present an example of how something called a magnetic flux rope builds up over time until it is so unstable that even the slightest perturbation will send it flying.

Understanding what triggers CMEs is crucial not only for better understanding of our sun, but also to lay the groundwork for predicting when such giant explosions might happen.

"We looked at a well-studied CME from 2006," said Tahar Amari first author on the Nature paper at Ecole Polytechnique in France. "We knew that there had been a great deal of data available for this CME and much analysis already done, but no one had created a comprehensive picture of what happened."

Amari and his colleagues used a traditional meteorology technique to examine the event: Gather observations from the days before the CME to track how the event grew over time. They used observations from the European Space Agency and NASA's Solar and Heliospheric Observatory, or SOHO, and the Japanese Aerospace Exploration Agency and NASA's Hinode, as well as from the Paris-Meudon Observatory.

The team wanted to see if they could distinguish between two broad theories about how the magnetic energy develops. The first model describes a situation in which a series of loops of magnetic fields on the sun - known as an arcade - is the start of every active region CME.

This arcade has a weak point at the top, a place where the energy from below can burst through once it's great enough. During the eruption a flux rope forms, which can be seen inside the CME as it surges away from the sun.

The second model assumes that the flux rope is there before the CME erupts. In this theory, no weak point is required. Instead, the flux rope gains more and more energy, and becomes increasingly unstable until a disturbance on the sun causes it to release the energy out into space.

Amari and his team used magnetic data from the surface obtained by Hinode, but they also needed magnetic data for the sun's atmosphere, the corona, which is strongly affected by its magnetic field.

"The corona is so hot that most of the techniques to measure the magnetic field don't work," said Amari. "So we developed an efficient and accurate model to compute the magnetic field there, based on the data we had from the surface, and the equations governing the physics of the low corona above active regions."

With these two data sets in hand, the team examined what happened in the four days before the 2006 CME erupted. They could see the magnetic energy building; it was clear something was emerging. Only, however, on the last day did a flux rope develop and only then did it have enough energy built up to power a CME eruption. At this point, some small disruption was enough of a nudge to make the flux rope erupt.

"In this case no weak point up in the atmosphere was needed to allow the energy to be released," said Amari.

"There is, instead, a kind of critical value of energy, a value we can compute based on seeing an active magnetic region on the sun. Beneath that value the magnetic field will stay quiet. Above that, it is likely to erupt. There is also a critical height for rising flux rope, beyond which the magnetic loops above can no longer keep it confined."

The team explored the initial conditions from this event and put the information into another dynamical model the team had developed. The simulation mirrored what was actually seen, with an eruption occurring only when the critical energy and height were reached on the last day.

Amari points out that just because this CME contained a flux rope prior to eruption, it doesn't mean that other CMEs can't erupt based on other physical catalysts. But it clearly describes one mechanism that is at work on the sun.

By measuring and calculating the magnetic fields on the sun, coupled with determining how to measure the critical tipping point where a CME can erupt, the paper offers new ways to determine the possibility of eruption from any given active area on the sun.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
NASA SOHO
Solar Science News at SpaceDaily






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





SOLAR SCIENCE
DSCOVR set for voyage to "far out" orbit
Greenbelt MD (SPX) Jan 27, 2015
Many satellites that monitor the Earth orbit relatively close to the planet, while some satellites that monitor the sun orbit our star. DSCOVR will keep an eye on both, with a focus on the sun. To cover both the Earth and sun, it will have an unusual orbit in a place called L1. The Deep Space Climate Observatory, or DSCOVR, spacecraft will orbit between Earth and the sun, observing and pro ... read more


SOLAR SCIENCE
Service Module of Chinese Probe Enters Lunar Orbit

Service module of China's lunar orbiter enters 127-minute orbit

Chinese spacecraft to return to moon's orbit

Russian Company Proposes to Build Lunar Base

SOLAR SCIENCE
Helicopter Could be 'Scout' for Mars Rovers

Hilltop Panorama Marks Mars Rover's 11th Anniversary

Mysteries in Nili Fossae

NASA, Microsoft Collaboration Will Allow Scientists to 'Work on Mars'

SOLAR SCIENCE
NASA, Boeing, SpaceX Outline Objectives to ISS Flights

Virgin Galactic Appoints Mark Stucky as Pilot

Boeing will be first to carry US astronauts to space

Singer Sarah Brightman in training for space tourist role

SOLAR SCIENCE
More Astronauts for China

China launches the FY-2 08 meteorological satellite successfully

China's Long March puts satellite in orbit on 200th launch

Countdown to China's new space programs begins

SOLAR SCIENCE
Roscosmos, NASA Still Planning on Sending Men Into Space

NASA's CATS Installed on ISS by Robotic Handoff

Russian Cargo Spacecraft to Supply ISS With Black Caviar

Astronauts' year-long mission will test limits

SOLAR SCIENCE
SES Entrusts Arianespace With SES-12

Soyuz Installed at Baikonur, Expected to Launch Wednesday

Google aboard as Musk's SpaceX gets $1 bn in funding

Client Pauses Launch of Proton Rocket Carrying British Satellite

SOLAR SCIENCE
Gigantic ring system around J1407b much larger, heavier than Saturn's

New research re-creates planet formation in the lab

Planets outside our solar system more hospitable to life than thought

Planetary building blocks evolved from porous to hard objects

SOLAR SCIENCE
Scientists invent 3-D printer 'teleporter'

Planetary Society announces test flight for LightSail

Integral manoeuvres for the future

Report says no technological replacement exists for bulk data collection




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.