. 24/7 Space News .
STELLAR CHEMISTRY
SDU researchers present a new model for what dark matter might be
by Staff Writers
Odense, Denmark (SPX) Mar 17, 2016


Dark matter and dark energy
27% of the universe is believed to consist of dark matter. Dark matter is thought to be the gravitational "glue" that binds the galaxies together. No one knows what dark matter actually is.

5% the universe consists of known material such as atoms and subatomic particles.

The rest of the universe is believed to consist of dark energy. Dark energy is believed to be responsible for the current rate of the expansion of the universe.

Dark matter is all around us. Though no one has ever seen it, and no one knows what it really is, indisputable physical calculations state that approximately 27% of the universe is dark matter. Only five % is the matter of which all known materials consist; from the smallest ant to the largest galaxy.

For decades, researchers have tried to detect this invisible dark matter. Several types of devices have been put up on Earth and in space to capture the particles that dark matter is supposed to consist of, and experiments have attempted to create a dark matter particle by colliding ordinary matter particles at very high temperatures.

If such a collision should one day succeed, we would however not be able to directly see the produced dark matter particle. It would immediately pass on and fly away from the detectors - but it will take some energy with it, and this energy loss will be recorded and indicate that a dark particle had been produced.

Despite all these initiatives no dark particle has yet been detected.

"Maybe it's because we have looked after dark particles in a way that will never be able to reveal them. Maybe dark matter is of a different character and needs to be looked for in a different way," says Martin Sloth, associate professor at The Centre for Cosmology and Particle Physics Phenomenology (CP3-Origins), University of Southern Denmark.

Together with his postdoc McCullen Sandora from CP3-Origins and postdoc Mathias Garny from CERN, he now presents a new model for what dark matter might be in the journal Physical Review Letters.

For decades, physicists have been working on the theory that dark matter is light and therefore interacts weakly with ordinary matter. This means that the particles are capable of being produced in colliders. This theory's dark particles are called weakly-interacting massive particles (WIMPs), and they are theorized to have been created in an inconceivably large number shortly after the birth of the universe 13.7 billion years ago.

"But since no experiments have ever seen even a trace of a WIMP, it could be that we should look for a heavier dark particle that interacts only by gravity and thus would be impossible to detect directly," says Martin Sloth.

Sloth and his colleagues call their version of such a heavy particle a PIDM particle (Planckian Interacting Dark Matter).

In their new model, they calculated how the required number of PIDM particles could have been created in the early universe.

"It was possible, if it was extremely hot. To be more precise the temperatures in the early universe must have been the highest possible in the Big Bang theory," says Sloth.

Whether this was the case or not can be tested. He explains further:

"If the universe indeed was as hot as calculated in our model, several gravitational waves from the very early childhood of the universe would have been created. We might be able to find out in the near future.

"With this Sloth refers to a number of planned experiments around the world that will be able to detect signals from very early gravitational waves.

"If these experiments do not detect such signals, then our model will be falsified. Thus gravitational waves can be used to test our model," he says.

More than 10 different experiments are planned. They aim to measure the polarization of the cosmic background radiation, either from the ground or with instruments sent up in a balloon or satellite to avoid atmospheric disturbances.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Southern Denmark
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
New fast radio burst discovery finds 'missing matter' in the universe
Tokyo, Japan (SPX) Mar 01, 2016
An international team of scientists using a combination of radio and optical telescopes identified the distant location of a fast radio burst (FRB) for the first time. This discovery has allowed them to confirm the current cosmological model of the distribution of matter in the universe. The fast radio burst was detected on April 18, 2015 by the Commonwealth Scientific and Industrial Resea ... read more


STELLAR CHEMISTRY
Permanent Lunar Colony Possible in 10 Years

China to use data relay satellite to explore dark side of moon

NASA May Return to Moon, But Only After Cutting Off ISS

Lunar love: When science meets artistry

STELLAR CHEMISTRY
Europe's New Mars Mission Bringing NASA Radios Along

Europe, Russia embark on search for life on Mars

How the ExoMars mission could sniff out life on Mars

ExoMars on its way to solve the Red Planet's mysteries

STELLAR CHEMISTRY
Astronaut Scott Kelly to retire in April

Space travel rules needed within 5 years: UN

Belgium Plans to Create Own National Space Agency

Accelerating discovery with new tools for next generation social science

STELLAR CHEMISTRY
China's ambition after space station

Sky is the limit for China's national strategy

Aim Higher: China Plans to Send Rover to Mars in 2020

China's lunar probe sets record for longest stay

STELLAR CHEMISTRY
Marshall supports 15 years of ISS science discoveries

Space station astronauts ham it up to inspire student scientists

Roscosmos-NASA Contract on US Astronauts Delivery to ISS on Restructuring

NASA station leads way for improved measurements of Earth orientation, shape

STELLAR CHEMISTRY
ISRO launches PSLV C32, India's sixth navigation satellite

Soyuz 2-1B Carrier Rocket Launched From Baikonur

Assembly of Russia's Soyuz Rocket With Earth-Sensing Satellite Completed

Ariane 5 launch contributes to Ariane 6 development

STELLAR CHEMISTRY
NASA's K2 mission: Kepler second chance to shine

Star eruptions create and scatter elements with Earth-like composition

Astronomers discover two new 'hot Jupiter' exoplanets

Sharpest view ever of dusty disc around aging star

STELLAR CHEMISTRY
Superman can start worrying - we've got the formula for (almost) kryptonite

ORNL researchers stack the odds for novel optoelectronic 2-D materials

Total invisibility cloak an impossibility, scientists say

Unpacking space radiation to control astronaut and earthbound cancer risk









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.