. 24/7 Space News .
TIME AND SPACE
Russian scientists demonstrate perfect light absorption by single nanoparticle
by Staff Writers
Moscow, Russia (SPX) Jun 16, 2021

file illustration only

Scientists from ITMO University and Moscow Institute of Physics and Technology (MIPT) have proven that small objects, just like big ones, are capable of perfect light absorption. The results of this research will be helpful in the development of new technologies for wireless transfer of energy and data. The paper was published in Laser and Photonics Reviews.

Light can interact with matter in a variety of ways: it can refract, dissipate, or be absorbed by it. Usually, all three processes occur simultaneously. In most cases, that is not an issue. But there are scientific fields where materials need to absorb all of the light. For instance, every photon that is refracted off the surface of a solar cell lowers a solar power plant's efficiency rate.

"A light wave consists of light particles - photons. Every time it falls onto a "dark," or non-transparent material, such as carbon, a dye, or an asphalt road, it loses some of its energy. Only a certain fraction of the photons is converted into heat energy, while the rest is refracted, dissipated, or passes through the absorbing matter," says MIPT researcher Denis Baranov.

Scientists around the world are trying to minimize the number of these lost photons, or, ideally, reduce it to zero. Earlier on, researchers succeeded in demonstrating the phenomenon of perfect absorption in large bodies of matter that were several times the size of a light beam. But the question remained unsolved of whether the same was possible for miniature objects. Researchers from ITMO and MIPT have become the first to calculate the properties of a small object that could completely absorb all incidental light.

"In the course of our calculations, we succeeded in reducing this complex analytical task to a simpler one - a Fredholm integral equation of the second kind. Having solved it, we found the idea combination of particle and light properties that would ensure perfect absorption at the nanoscale. Importantly, this combination works well at the nanoscale as well as in objects the size of a battery for a phone or a laptop," explains Alexey Proskurin, a PhD student at ITMO University.

"Absorption of electromagnetic energy is at the heart of many modern devices. Reducing the size of the absorbers will make the devices themselves much smaller. We hope that the results of this research will be useful in the creation of compact microwave and optical antennas, as well as efficient wireless energy transfer devices," concludes Andrey Bogdanov, an associate professor at ITMO University.

Research Report: "Perfect Absorption of a Focused Light Beam by a Single Nanoparticle"


Related Links
ITMO University
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
Novel materials: Sound waves traveling backwards
Karlsruhe, Germany (SPX) Jun 11, 2021
Acoustic waves in gases, liquids, and solids usually travel at an almost constant speed of sound. So-called rotons are an exception: their speed of sound changes significantly with the wavelength, and it is also possible that the waves travel backwards. Researchers at Karlsruhe Institute of Technology (KIT) are studying the possibilities of using rotons in artificial materials. These computer-designed metamaterials, produced by ultra-precise 3D laser printing, might be used in the future to manipu ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Orchids in orbit: Seeds tested in space

Boeing plans second Starliner capsule test flight in July

US, French astronauts make ISS spacewalk

Sierra Space and Rhodium Scientific exploring viability of science operations on Sierra Space Life Habitat

TIME AND SPACE
Boost for UK space sector as new facility offers cheaper and greener rocket testing

Debris from carrier rocket drop safely

Operational Fires Program completes successful rocket engine tests

Turkey invites Russia to take part in construction of country's spaceport

TIME AND SPACE
Mars rover to move south after testing

China reveals photos taken by Mars rover

Perseverance Rover Begins Its First Science Campaign on Mars

NASA's Mars helicopter Ingenuity flies for 7th time

TIME AND SPACE
Stringent training will help fulfill spacewalk mission

China in space for cooperation, not zero-sum race

First astronauts arrive at China's space station

Rocket blasts off carrying first Chinese crew to new space station

TIME AND SPACE
USAF, FAA collaborate on commercial space regulations

SES Renews Long-Term Relationship with Comcast Technology Solutions

South Australia startups target international space opportunities

Voyage 2050 sets sail: ESA chooses future science mission themes

TIME AND SPACE
Meringue-like material could make aircraft as quiet as a hairdryer

Space sustainability rating to shine light on debris problem

US Navy tests warship's metal with megablast

Compact quantum computer for server centers

TIME AND SPACE
Study of young chaotic star system reveals planet formation secrets

Researchers discover orbital patterns of trans-Neptunian objects

SpaceML.org aims to accelerate AI application in space science and exploration

Liquid water on exomoons of free-floating planets

TIME AND SPACE
Next stop Jupiter as country's interplanetary ambitions grow

First images of Ganymede as Juno sailed by

Leiden astronomers calculate genesis of Oort cloud in chronologically order

NASA's Juno to get a close look at Jupiter's Moon Ganymede









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.