. 24/7 Space News .
TECH SPACE
Russian scientist found out what happens with 'smart' magnetic gel in a magnetic field
by Staff Writers
Yekaterinburg, Russia (SPX) Dec 22, 2017


Microphotographs of magnetic polymers with particles forming chain aggregates directed along the magnetic field H.

Magnetic gels are the new generation of "smart" composite materials. They consist of a polymer medium and nano- or micro-dimensional magnetic particles embedded in it. These composites are frequently used in magnetically controlled shock absorbers, stabilizers, safety systems, mechanical stress amplifiers, as well as in engineering and in biotechnology (for the purpose of regeneration of biological tissues). A remarkable feature of magnetic gels is their ability to change their elastic properties under the influence of moderately strong magnetic fields (fields easily provided in laboratories).

However, the dependence of elastic characteristics of these materials on the external field remains a poorly studied issue. Recently, the physical nature of these dependencies was investigated in by a professor of the Ural Federal University, Alexander Zubarev. He presented his findings at the international conference IBEREO 2017 (Valencia, Spain, 6-8 September).

Magnetic gels is a relatively "young" type of composite multifunctional materials. The first studies on their synthesis date back to the late 1980s - early 1990s, but they began to be studies in earnest only ten years ago. Depending on the area of their application, magnetic gels are manufactured on the basis of both synthetic and biological polymers.

The size of the embedded magnetic particles varies from scores of nanometers to scores of microns. One of the most interesting features of magnetic gels is their ability to change their mechanical properties (coefficients of elasticity and viscoelasticity) by several times and even orders of magnitude under the influence of moderate magnetic fields, easily created in laboratories and in industry.

These unique properties are based on the ability of magnetic particles to preserve the most energetically favorable mutual position in a magnetic field of a given magnitude. When the material is deformed, this arrangement is disrupted, but the particles, under the influence of magnetic interaction forces, tend to return to it. This generates an additional, often very strong, elastic reaction of the material to its deformation. The ability to control the elastic response of a magnetic gel with a magnetic field is very promising for many industrial and medical technologies.

It has been demonstrated that the magnetoelastic phenomena in magnetic gels are largely determined by the initial spatial arrangement of the particles in the carrier polymer. In the new work of Andrei Zubarev (professor of the Department of Theoretical and Mathematical Physics, Ural Federal University, Russia), the deformations of a polymer sample with an initial homogeneous (as a molecule in gas) spatial distribution of magnetizable particles were investigated.

The results achieved by Zubarev and his colleagues reveal the peculiarities of the change in the mutual arrangement of particles under the influence of the field and the general deformation of the composite, the influence of these features on the elasticity coefficients of the material. The theory predicts the possibility of radical increase of the stiffness of the composite in an external field.

In the future, scientists are going to work with materials that are synthesized in an external magnetic field. In this case, the particles, under the influence of magnetic attraction, form different structures (linear chains, dense columns, etc.), which are able to greatly strengthen both the elastic properties of the material and the magnetomechanical phenomena in it.

TECH SPACE
Seeing through walls of unknown materials
Durham NC (SPX) Dec 14, 2017
Researchers at Duke University have devised a way to see through walls using a narrow band of microwave frequencies without any advance knowledge of what the walls are made out of. Besides having obvious applications in the realm of security, the approach could lead to inexpensive devices to help construction workers easily locate conduits, pipes and wires. The study was published in the j ... read more

Related Links
Ural Federal University
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Crew of three docks at International Space Station

'Dragon back' as cargo reaches space station

SpaceX resupply truck Dragon on route to ISS for space research delivery

2 rookie astronauts, and cosmonaut blast off to ISS

TECH SPACE
Ariane 5 to loft Heinrich Hertz technology demonstrator satellite

In first, SpaceX launches recycled rocket and spaceship

Elon Musk shares new photos of Falcon Heavy Rocket

ArianeGroup to start production of the first Ariane 62

TECH SPACE
Mars upside down

Thirsty rocks may contain the missing water of Mars

Planting oxygen ensures a breath of fresh air

A model of Mars-like protoplanets shed light on early solar activity

TECH SPACE
Nation 'leads world' in remote sensing technology

China plans for nuclear-powered interplanetary capacity by 2040

China plans first sea based launch by 2018

China's reusable spacecraft to be launched in 2020

TECH SPACE
Green Light for Continued Operations of ESA Science Missions

New business incubators will help space industry grow

mu Space becomes first Thai startup to acquire satellite license

Regulation and compliance for nontraditional space missions

TECH SPACE
Software enables robots to be controlled in virtual reality

Seeing through walls of unknown materials

Boeing tapped to sustain Space-Based Space Surveillance system

NASA laser communication payload undergoing integration and testing

TECH SPACE
Spanning disciplines in the search for life beyond Earth

Cold suns, warm exoplanets and methane blankets

A New Approach for Detecting Planets in the Alpha Centauri System

NASA uses AI to uncover eighth planet circling distant star

TECH SPACE
Study explains why Jupiter's jet stream reverses course on a predictable schedule

New Horizons Corrects Its Course in the Kuiper Belt

Does New Horizons' Next Target Have a Moon?

Juno probes the depths of Jupiter's Great Red Spot









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.