Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Russain physicists from study laser beam compressed into thin filament
by Staff Writers
Moscow, Russia (SPX) Jun 05, 2015


The supercontinuum generation is in an optical fiber. The input is composed of infrared pulses, and the output includes practically the whole visible spectrum. Image courtesy of Dimitris Papadopoulos. For a larger version of this image please go here.

A group of scientists from the Lebedev Physical Institute of the Russian Academy of Sciences, Moscow Institute of Physics and Technology and Moscow State University recently presented their research into the process of laser pulse filamentation - the effect produced when a laser beam propagating in air focuses into a filament. The researchers discovered how this process influences the preliminary transition of a beam passing through quartz glass, which has applications in the field of nonlinear optics.

Light propagates in straight lines, and beams of light are only reflected or refracted to the side when the properties of the medium it is passing through change. This is the basis of linear optics: it is called 'linear' because the division of electric charges that occurs when light passes through a medium is linearly dependent on the intensity of the fields in the light wave itself. In other words, the stronger the electric field, the more the different charges are dispersed within the material - the material becomes polarized.

The polarization of a material should not be confused with the polarization of light. This polarization is characterised by the degree to which the positive and negative charges are dispersed in a substance, and in this way the presence of specific directions within the electromagnetic wave within which the electric fields vibrate is called polarization.

Ordinary light is a mixture of waves having different polarizations, and lasers, as a rule, produce polarized beams, a set of similarly orientated waves.

However if the light is very strong, then its influence on materials cannot be described by these simple rules. At the microscopic level, the picture of the displacement of electric charges in substances under the influence of an electromagnetic field changes, but at normal scales light begins to behave in strange ways. The beams, instead of dispersing in different directions and dissipating, begin to gather into narrow strands, or as optics researchers call them, filaments. Light can even make substances change color - an effect known as supercontinuum (that is, white light in which lights of different colors are mixed) and harmonic generation.

Only lasers provide a sufficiently strong light (more accurately, beam intensity) capable of producing nonlinear effects. When these light sources were first made, nonlinear optics began to develop quickly, but even today not all nonlinear optical effects are fully researched. In particular, filaments have been actively researched since the sixties, but there is still no complete theory that describes their characteristics in different conditions.

Atmospheric composition, beam intensity, wave length polarization and a multitude of other factors affect the formation of filaments. Real optical assemblies usually consist of a variety of different elements, and each of them, whether the mirror, lens, or even simple glass plates, can change the picture quite radically. In the new research, which is discussed in detail below, the scientists investigate the process of laser pulse filamentation.

The experiment and results
Nonlinear optical effects can be studied only with very large intensities. So large, in fact, that they can only be produced with powers in the gigawatt range - consequently, for experimental research, it is necessary to achieve a very short pulse. So, if a pulse with a combined energy of 2.2 millijoules is compressed to a hundred femtoseconds (10 to 13 seconds), then the power of the beam will be more than 20 gigawatts.

And if this beam is also focused into a speck with a three millimeter diameter, then we get an intensity of light an order higher than the intensity of light close to the sun's surface, which has a radiation power of about 20 gigawatts a square meter.

How does brightness differ from intensity and luminosity? Brightness shows how much light is emitted by an object in a given direction. Luminosity describes how much light is emitted by a source in all directions. Intensity is how much energy is carried by an electromagnetic wave in a given unit of time and in a given unit of area.

The dimensions outlined in the previous paragraph are those used in the experiment conducted by the researchers from MSU, MIPT, and the Lebedev Institute. The experimental group, under the leadership of Andrei Ionin, head of the Laboratory of Gas Lasers, consisting of staff members Darya Mokrousova, Leonid Seleznyov, Elena Sunchugasheva and Anna Shustikova, used a Ti:sapphire pulse laser.

The beam is focused using a spherical mirror and passes through a quartz glass plate and is directed towards two ring electrodes that are held at 300 volts. When the laser pulse has ionized the air, a current begins to pass between the electrodes and, as a result, the physicists are able to assess the appearance of the plasma clusters formed under the influence of the light that has formed into filaments.

After analyzing the shape and size of the filaments thus formed, the researchers changed the quartz plate through which the light passed before it was focused. It appeared that changing the thickness of the transparent plate affected not only the length of the plasma channel, but also the distance at which it arose.

By focusing the laser beam using a lens with a focal point of 230 cm in the absence of a quartz plate, the laser beam formed at a distance of 150 cm, introducing a 4.5 mm plate caused the formation of plasma filaments to be brought nearer by 40 cm, and by increasing the thickness of the plate to 10.5 mm, the distance to the start of the plasma was reduced by almost 85 cm. In addition, the length of the plasma produced increases with an increase in the thickness of the quartz plate.

Quantitative modeling of the experiment conducted by the MSU research group consisting of Valery Kandidov, Svyatoslav Shlenov and Alexander Dergachev revealed a strong correlation with the experiment itself. A detailed report on the behavior of the laser filaments was published by the physicists in the journal Laser Physics Letters.

Why is this needed?
Earlier, the Laboratory of Gas Lasers at Lebedev demonstrated that such lasers can be used for many different tasks, from the etching of diamonds to medical operations, as beams concentrated into fine filaments enable more precise interactions with different materials. However, in practice, real optical systems rarely consist of just one laser. They can also include mirrors, lenses and transparent windows that are used to enclose the technological space used for processing materials.

The new research has shown the even transparent plates made of quartz glass can significantly alter the laser filaments, an effect that leads to an improvement in the precision of material processing or a correction to the distance at which the power of the laser beam is delivered.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Moscow Institute of Physics and Technology
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
The Internet wants a laser mounted on the space station
Tokyo (UPI) May 19, 2015
A proposal to mount a laser on the International Space Station is finding support among Internet users. A glut of articles about the possible plan to vaporize space junk proliferated across trending news feeds on Tuesday, nearly a month after scientists at Japan's RIKEN research institute went public with the idea. The strange (and seemingly unlikely) plan is an attempt to solve a real ... read more


TECH SPACE
Crashing comets may explain mysterious lunar swirls

Google Lunar X-Prize meets Yoda

China, Russia plan joint landing on the Moon

NASA's LRO Moves Closer to the Lunar Surface

TECH SPACE
Building a Smarter Rover

Rover Ready for Solar Conjunction and Period of Curtailed Operations

Mars Missions to Pause Commanding in June, Due to Sun

NASA Spacecraft Detects Impact Glass on Surface of Mars

TECH SPACE
ESA astronaut Samantha Cristoforetti returning home

Destination Mars? NASA's Flying Saucer May be the Ticket

NASA 'flying saucer' deploys partially on test

LightSail spreads its sails

TECH SPACE
Electric thruster propels China's interstellar ambitions

China Plans First Ever Landing On The Lunar Far Side

China ranked 4th among world space powers

3D printer making Chinese space suit parts

TECH SPACE
Crewmembers From ISS to Return to Earth June 11

Historic handshake between space and Earth

Astronauts delayed return from ISS set for June 11: Russia

Space Station remodelling

TECH SPACE
Angara to launch first manned rocket from Vostochny in 2023

Airbus developing reusable space rocket launcher

Recent Proton loss to push up launch costs warns manufacturer

Air Force Certifies SpaceX for National Security Space Missions

TECH SPACE
Astronomers discover a young solar system around a nearby star

Hubble in 'Oh Planet, What Art Thou?' 25th Anniversary Video

Astronomers Discover a Young Solar System Around a Nearby Star

Circular orbits identified for small exoplanets

TECH SPACE
Saving money and the environment with 3-D printing

All shook up for greener chemistry

Russain physicists from study laser beam compressed into thin filament

Lockheed completesc assembly of next-gen weather satellite for NOAA




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.