. 24/7 Space News .
CHIP TECH
Room temperature magnetic skyrmions, a new type of digital memory
by Staff Writers
Davis CA (SPX) Oct 09, 2015


Magnetic skyrmions are a type of swirling magnetic structure that maintains its topology. Physicists at UC Davis and NIST have developed nano dots that induce magnetic skyrmions in a film (arrows show magnetic moments). Image courtesy Kai Liu and UC Davis. For a larger version of this image please go here.

An exotic, swirling object with the sci-fi name of a "magnetic skyrmion" could be the future of nanoelectronics and memory storage. Physicists at UC Davis and the National Institute of Standards and Technology (NIST) have now succeeded in making magnetic skyrmions, formerly found at temperatures close to absolute zero, at room temperature.

"This is a potentially new way to store information, and the energy costs are expected to be extremely low," said Kai Liu, professor of physics at UC Davis and corresponding author of a paper on the work, published in the journal Nature Communications.

Skyrmions were originally described over 50 years ago as a type of hypothetical particle in nuclear physics. Actual magnetic skyrmions were discovered only in 2009, as chiral patterns of magnetic moments - think of a moment as a tiny compass needle - in materials close to absolute zero temperature, in the presence of a strong magnetic field.

Magnetic skyrmions fall into two types, Liu said: "Bloch skyrmions," with a hurricane-like spiral pattern of magnetic moments around a perpendicular center, surrounded by magnetic moments oriented in the opposite direction to the center; and "hedgehogs," where the magnetic moments orient like spikes on a hedgehog or sea urchin.

The interesting thing about magnetic skyrmions, Liu said, is that they are "topologically protected:" they can be continuously deformed, in the same way that a coffee mug shape can be deformed into a bagel shape, but they do not readily go back into a state where all the magnetic moments are aligned. That means they can potentially store information at an energy cost much lower than current technology, Liu said.

Together with graduate student Dustin Gilbert, now a postdoctoral fellow at NIST, Liu and colleagues designed a nanosynthesis approach to achieve artificial "Bloch" magnetic skyrmions at room temperature. They created a pattern of magnetic nanodots, each about half a micron across, on a multilayered film where the magnetic moments are aligned normal to the plane. They used ion beam irradiation to modify the interface between the dots and the film to allow "imprinting" of the magnetic moments of the dots into the film.

Using neutron-scattering at NIST Center for Neutron Research, they were able to resolve the magnetic profiles along the depth of the hybrid structure. Combined with magnetic imaging studies at NIST and Lawrence Berkeley Laboratory, they were able to find the first direct evidence of arrays of stable spiral magnetic skyrmions beneath the nanodots at room temperature, even without an external magnetic field.

The availability of stable magnetic skyrmions at room temperature opens up new studies on their properties and potential development in electronic devices, such as nonvolatile magnetic memory storage.

Coauthors on the paper are Brian Maranville, Andrew Balk, Brian Kirby, Daniel Pierce, John Unguris and Julie Borchers at NIST, and Peter Fischer, LBL and UC Santa Cruz. Nanofabrication work and other characterizations were carried out in Liu's laboratory and at the Center for Nano and Micro Manufacturing at UC Davis. The work was funded by the National Science Foundation.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of California - Davis
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CHIP TECH
Organic semiconductors get weird at the edge
Vancouver, Canada (SPX) Oct 08, 2015
As the push for tinier and faster electronics continues, a new finding by University of British Columbia scientists could help inform the design of the next generation of cheaper, more efficient devices. The work, published this week in Nature Communications, details how electronic properties at the edges of organic molecular systems differ from the rest of the material. Organic materials- ... read more


CHIP TECH
Lunar Pox

Space startup confirms plans for robotic moon landings

Asteroids found to be the moon's main 'water supply'

Russian scientist hope to get rocket fuel, water, oxygen from Lunar ice

CHIP TECH
NASA outlines obstacles to putting a human on Mars

ASU Mars images star in 'The Martian'

Mars colonisation still far off: Amitabh Ghosh

NASA Challenge Seeks Ways to Use Mars' Natural Resources for Astronauts

CHIP TECH
They're Loving It: Cheeseburgers Will Be Added to ISS Menu

NASA Offers Licenses of Patented Technologies to Start-Up Companies

Back to the future: Science fiction turns science fact

Dream Chaser preps for 2nd free-flight test and first orbital test

CHIP TECH
Latest Mars film bespeaks potential of China-U.S. space cooperation

Exhibition on "father of Chinese rocketry" opens in U.S.

The First Meeting of the U.S.-China Space Dialogue

China's new carrier rocket succeeds in 1st trip

CHIP TECH
Meet the International Docking Adapter

NASA extends Boeing contract for International Space Station

Russian launches cargo spaceship to the ISS

Successful re-entry of H-II Transfer Vehicle Kounotori5

CHIP TECH
Both passengers for next Ariane 5 mission arrive in French Guiana

Arianespace signs ARSAT to launch a new satellite for Argentina

Ariane 5 orbits Sky Muster and ARSAT-2

A satellite launcher for the Middle East

CHIP TECH
Exoplanet Anniversary: From Zero to Thousands in 20 Years

Mysterious ripples found racing through planet-forming disc

The Most Stable Source of Light in the World

Earth-class planets likely have protective magnetic fields, aiding life

CHIP TECH
Even if imprisoned inside a crystal, molecules can still move

Disney uses augmented reality to turn coloring books into 3-D experience

Selex ES delivers air defense radars to Poland

Faster design - better catalysts









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.