. 24/7 Space News .
EARLY EARTH
Robot helps study how first land animals moved 360 million years ago
by Staff Writers
Atlanta GA (SPX) Jul 11, 2016


When early terrestrial animals began moving about on mud and sand 360 million years ago, the powerful tails they used as fish may have been more important than scientists previously realized. That's one conclusion from a new study of African mudskipper fish and a robot modeled on the animal. Image courtesy Georgia Tech. Watch a video on the research here.

When early terrestrial animals began moving about on mud and sand 360 million years ago, the powerful tails they used as fish may have been more important than scientists previously realized. That's one conclusion from a new study of African mudskipper fish and a robot modeled on the animal.

Animals analogous to the mudskipper would have used modified fins to move around on flat surfaces, but for climbing sandy slopes, the animals could have benefitted from using their tails to propel themselves forward, the researchers found. Results of the study, reported this week in the journal Science, could help designers create amphibious robots able to move across granular surfaces more efficiently - and with less likelihood of getting stuck in the mud.

Sponsored by the National Science Foundation, the Army Research Office and the Army Research Laboratory, the project involved a multidisciplinary team of physicists, biologists and roboticists from the Georgia Institute of Technology, Clemson University and Carnegie Mellon University. In addition to a detailed study of the mudskipper and development of a robot model that used the animal's locomotion techniques, the study also examined flow and drag conditions in representative granular materials, and applied a mathematical model incorporating new physics based on the drag research.

"Most robots have trouble moving on terrain that includes sandy slopes," said Dan Goldman, an associate professor in the Georgia Tech School of Physics. "We noted that not only did the mudskippers use their limbs to propel themselves in a kind of crutching motion on sand and sandy slopes, but that when the going got tough, they used their tails in concert with limb propulsion to ascend a slope. Our robot model was only able to climb sandy slopes when it similarly used its tail in coordination with its appendages."

Based on fossil records, scientists have long studied how early land animals may have gotten around, and the new study suggests their tails - which played a key role in swimming as fish - may have helped supplement the work of fins, especially on sloping granular surfaces such as beaches and mudflats.

"We were interested in examining one of the most important evolutionary events in our history as animals: the transition from living in water to living on land," said Richard Blob, alumni distinguished professor of biological sciences at Clemson University.

"Because of the focus on limbs, the role of the tail may not have been considered very strongly in the past. In some ways, it was hiding in plain sight. Some of the features that the animals used were new, such as limbs, but some of them were existing features that they simply co-opted to allow them to move into a new habitat."

With Ph.D. student Sandy Kawano, now a researcher at the National Institute of Mathematical and Biological Synthesis, Blob's lab recorded how the mudskippers (Periopthalmus barbaratus) moved on a variety of loose surfaces, providing data and video to Goldman's laboratory. The small fish, which uses its front fins and tail to move on land, lives in tidal areas near shore, spending time in the water and on sandy and muddy surfaces.

Benjamin McInroe was a Georgia Tech undergraduate who analyzed the mudskipper data provided by the Clemson team. He applied the principles to a robot model known as MuddyBot that has two limbs and a powerful tail, with motion provided by electric motors. Information from both the mudskipper and robotic studies were also factored into a mathematical model provided by researchers at Carnegie Mellon University.

"We used three complementary approaches," said McInroe, who is a now a Ph.D. student at the University of California Berkeley. "The fish provided a morphological, functional model of these early walkers. With the robot, we are able to simplify the complexity of the mudskipper and by varying the parameters, understand the physical mechanisms of what was happening. With the mathematical model and its simulations, we were able to understand the physics behind what was going on."

Both the mudskippers and the robot moved by lifting themselves up to reduce drag on their bodies, and both needed a kick from their tails to climb 20-degree sandy slopes. Using their "fins" alone, both struggled to climb slopes and often slid backward if they didn't use their tails, McInroe noted. Early land animals likely didn't have precise control over their limbs, and the tail may have compensated for that limitation, helping the animals ascend sandy slopes.

The Carnegie Mellon University researchers, who have worked with Goldman on relating the locomotion of other animals to robots, demonstrated that theoretical models developed to describe the complex motion of robots can also be used to understand locomotion in the natural world.

"Our computer modeling tools allow us to visualize, and therefore better understand, how the mudskipper incorporates its tail and flipper motions to locomote," said Howie Choset, a professor in the Robotics Institute at Carnegie Mellon University. "This work also will advance robotics in those cases where a robot needs to surmount challenging terrains with various inclinations."

The model was based on a framework proposed to broadly understand locomotion by physicist Frank Wilczek - a Nobel Prize winner - and his then student Alfred Shapere in the 1980s. The so-called "geometric mechanics" approach to locomotion of human-made devices (like satellites) was largely developed by engineers, including those in Choset's group. To provide force relationships as inputs to the mudskipper robot model, Georgia Tech postdoctoral fellow Jennifer Rieser and Georgia Tech graduate student Perrin Schiebel measured drag in inclined granular materials.

Information from the study could help in the design of robots that may need to move on surfaces such as sand that flows around limbs, said Goldman. Such flow of the substrate can impede motion, depending on the shape of the appendage entering the sand and the type of motion.

But the study's most significant impact may be to provide new insights into how vertebrates made the transition from water to land.

"We want to ultimately know how natural selection can act to modify structures already present in organisms to allow for locomotion in a fundamentally different environment," Goldman said. "Swimming and walking on land are fundamentally different, yet these early animals had to make the transition."

In addition to those already mentioned, the project also included co-first author Henry Astley, a Georgia Tech postdoctoral researcher when the project was done, and Chaohui Gong, a postdoctoral researcher at Carnegie Mellon.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Georgia Institute of Technology
Explore The Early Earth at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
EARLY EARTH
Previously unknown global ecological disaster discovered
Zurich, Switzerland (SPX) Jul 03, 2016
There have been several mass extinctions in the history of the earth. One of the largest known disasters occurred around 252 million years ago at the boundary between the Permian and the Triassic. Almost all sea-dwelling species and two thirds of all reptiles and amphibians died out. Although there were also brief declines in diversity in the plant world, they recovered in the space of a few tho ... read more


EARLY EARTH
Russia to spend $60M in 2016-2018 to fund space voyages to Moon, Mars

Russian Moon Base to Hold Up to 12 People

US may approve private venture moon mission: report

Fifty Years of Moon Dust

EARLY EARTH
Unusual form of sand dune discovered on Mars

Mars Rover's Sand-Dune Studies Yield Surprise

ChemCam findings hint at oxygen-rich past on Mars

Curiosity rover analysis suggests Mars has oxygen-rich history

EARLY EARTH
Quantum technologies to revolutionize 21st century

Blue Origin has fourth successful rocket booster landing

TED Talks aim for wider global reach

Disney brings its brand to Shanghai with new theme park

EARLY EARTH
Dutch Radio Antenna to Depart for Moon on Chinese Mission

Chinese Space Garbageman is not a Weapon

China launches new carrier rocket: state media

China's new launch center to get new viewing areas

EARLY EARTH
Down to Earth: Returned astronaut relishes little things

NASA Ignites Fire Experiment Aboard Space Cargo Ship

A Burial Plot for the International Space Station

Three astronauts touch down after 6 months in space

EARLY EARTH
Russia to Continue Rocket Engine Supplies to US Under Existing Contracts

India launches 20 satellites in single mission

LSU Chemistry Experiment Aboard Historic Suborbital Space Flight

Spaceflight contracts India's PSLV to launch 12 Planet Dove nanosats

EARLY EARTH
What Happens When You Steam a Planet

How Planetary Age Reveals Water Content

When it comes to brown dwarfs, 'how far?' is a key question

Newborn Planet Discovered Around Young Star

EARLY EARTH
New mid-infrared laser system could detect atmospheric chemicals

Winning Students Selected for Future Engineers Star Trek Replicator Challenge

Theoretical climbing rope could brake falls

How water gets its exceptional properties









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.