Free Newsletters - Space News - Defense Alert - Environment Report - Energy Monitor
. 24/7 Space News .




EARLY EARTH
Researchers work across fields to uncover information about hadrosaur teeth
by Cindy Spence UF News
Gainesville, FL (SPX) Oct 12, 2012


illustration only

An unusual collaboration between researchers in two disparate fields resulted in a new discovery about the teeth of 65-million-year-old dinosaurs.

With the help of University of Florida mechanical engineering professor W. Gregory Sawyer and UF postdoctoral researcher Brandon Krick, Florida State University paleobiologist Gregory Erickson determined the teeth of hadrosaurs - an herbivore from the late Cretaceous period - had six tissues in their teeth instead of two. The results were published in the journal Science Oct. 5.

"When something has been in the ground 65 million years, by and large we pick it up and we look at it and say, 'oh, look at what has been preserved.' But we don't mechanically interrogate fossils to see if there is other information," Sawyer said.

"When we started to mechanically interrogate these teeth, what we found was all of these properties were preserved, and one other thing: these teeth were a lot more complicated than we thought."

For years, Erickson, who has a background in biomechanical engineering and studies bone biomechanics as a paleobiologist, had thought so. So he turned to the UF Tribology Laboratory, which researches the science of friction and surface wear.

Engineers don't often see the interesting paleontological questions, Sawyer said. One look at the surface of the dinosaur teeth piqued his interest, however, because he is intrigued by how wear occurs across surfaces with different materials. The shape of the tooth made him think it was much more complex than previously thought.

From an engineering perspective, Sawyer said his lab often works with composites that contain different material properties that wear differently, so the question was whether just two materials - enamel and dentine - would wear the way the hadrosaur teeth did. Sawyer and Krick thought not, and turned to nanoindenters and microtribometers.

Just a decade ago, a paleontologist might not have asked engineers for help, and they could not have helped him. In the last 10 years, however, Sawyer said advances in engineering - tribology and nanoscience, in particular - make it possible to test more materials, even those millions of years old.

Erickson said reptilian dinosaurs have been dismissed as simplistic creatures in their feeding and dental structure. They were herbivores, their teeth composed of enamel and dentine. The fossil record did little to contradict that.

Testing with nanoindenters and microtribometers, however, proved the conventional wisdom wrong.

"Hadrosaurs' teeth were incredibly complicated, among the most complex of any animal," Sawyer said. "These dinosaurs had developed a lot of tricks."

The duck-billed hadrosaur was a toothy creature with up to 1,400 teeth, Erickson said. The teeth migrated across the chewing surface, with sharp, enamel-edged front teeth moving sideways to become grinding teeth as the teeth matured.

The adaptation allowed hadrosaurs to bite off chunks of bark and stems and chew them to a digestible mush, leading Erickson to describe them as "walking pulp mills."

The teeth wore down at the rate of 1 millimeter per day, cycling through the jaw like a conveyor belt, before falling out or being swallowed. The dinosaurs lost about 1,800 teeth a year, leaving behind plenty of fossils for testing.

When the fossils emerged from batteries of tests, the researchers found six tissues in the tooth structure, not two.

"Modern tools told us there were different materials in there," said Sawyer, who is also a UF Research Foundation Professor and Distinguished Teaching Scholar.

Erickson said the work could not have been accomplished without Sawyer's lab, "arguably the best tribological lab in the world," and said he is excited about the possibilities for new avenues of research. There are drawers full of fossils in collections around the world that may have more information to yield.

Sawyer agrees, and says that more engineering data could well be buried in fossils.

"Perhaps now it makes sense to take some of that fossil record, when we have other pieces of the record, and start to do things like sectioning and histology," Sawyer said.

"There are opportunities now with modern scientific tools to probe their mechanical and tribological properties. If we treat a fossil as a modern material, what happens? Do the mechanical properties track?"

The collaborative nature of the Florida university system was a key to getting the work done, Sawyer said, as was the funding his research gets from the University of Florida Foundation.

"It took us five years to do this because it was always a side project and wasn't funded. We could chew on it at our own pace," Sawyer said. "This is exactly what you hope for when you endow research, that people will take those funds and do things that are scientifically significant."

.


Related Links
University of Florida
Explore The Early Earth at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





EARLY EARTH
Duck-bill dinosaurs had plant-pulverizing teeth more advanced than horses
Washington DC (SPX) Oct 10, 2012
A team of paleontologists and engineers has found that duck-billed dinosaurs had an amazing capacity to chew tough and abrasive plants with grinding teeth more complex than those of cows, horses, and other well-known modern grazers. Their study, which was published in the journal Science, is the first to recover material properties from fossilized teeth. Duck-bill dinosaurs, also known as ... read more


EARLY EARTH
Russian moon mission said funded, ready

Rover designed to drill for moon ice

China has no timetable for manned moon landing

Senior scientist discusses China's lunar orbiter challenges

EARLY EARTH
Mars rover makes surprising rock find

Meteorite delivers Martian secrets to University of Alberta researcher

Mars Rock Touched by NASA Curiosity has Surprises

Resume Working with First Scooped Sample

EARLY EARTH
Austrian daredevil to make new space jump bid

Austrian daredevil eyes new space jump at weekend

Grants help scientists explore boundary between science and science fiction

Dead stars could be cosmic 'GPS'

EARLY EARTH
ChangE-2 Mission To Lagrange L2 Point

Meeting of heads of ESA and China Manned Space Agency

China Spacesat gets 18-million-USD gov't support

Tiangong Orbit Change Signals Likely Date for Shenzhou 10

EARLY EARTH
Crew Unloads Dragon, Finds Treats

Station Crew Opens Dragon Hatch

NASA and International Partners Approve Year Long ISS Stay

Year on ISS planned ahead of manned Mars mission

EARLY EARTH
India to launch 58 space missions in next 5 years

SpaceX Dragon Successfully Attaches To Space Station

Another Ariane 5 Enters Launch Campaign Queue

SpaceX capsule links up with space station: NASA

EARLY EARTH
Nearby Super-Earth Likely a Diamond Planet

Candels Team Discovers Dusty Galaxies At Ancient Epoch With Hubble Space Telescope

Large water reservoirs at the dawn of stellar birth

Comet crystals found in a nearby planetary system

EARLY EARTH
Swedish breakthrough in space on NASA satellite with electronics from AAC Microtec

US appeals court lifts ban on Samsung-Google phone

Focus on space debris: Envisat

Weizmann Institute Scientists observe quantum effects in cold chemistry




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement