. 24/7 Space News .
TECH SPACE
Researchers take cue from spider glue in efforts to create new materials
by Staff Writers
Blacksburg VA (SPX) Oct 28, 2015


Brent Opell, a professor of biological sciences in the College of Science and a Fralin Life Science Institute affiliate, collects a portion of a spider web. Image courtesy Lindsay Key. For a larger version of this image please go here.

A taut tug on the line signals the arrival of dinner, and the leggy spider dashes across the web to find a tasty squirming insect. The spider, known as an orb weaver, must perfectly execute this moment, from a lightning-fast reaction to an artfully spun web glistening with sticky glue.

This glue - created when glycoproteins are secreted from a spider's abdomen and interact with the atmosphere - has been studied for the past 12 years by Brent Opell, a professor of biological sciences in the College of Science and a Fralin Life Science Institute affiliate.

Material scientists are interested in mimicking this glue - nature's great adhesive - for human products, and rely on biologists to determine factors involved in its creation, as well as its capabilities and limitations.

Opell's research team, which included Sarah Stellwagen, a 2015 biological sciences doctoral graduate, and Mary Clouse of Fairfax Station, Virginia, a senior majoring in biological sciences, recently determined that ultraviolet rays, specifically UVB rays, are an important environmental factor in the performance of spider glue.

They tested the webs of five local spider species - three that catch prey in broad daylight, and two that hunt at night or in deep forest shade shaded areas.

They found that the webs of sun-soaked spiders were far more resistant to UVB rays than the webs of those that hunt in the dark or shade, perhaps indicating an important adaptive trait.The results were published recently in the Journal of Experimental Biology and could inform efforts to develop new adhesives.

"Our study adds UVB irradiation to the list of factors known to affect the performance of spider glycoprotein glue, which includes humidity, temperature, and strain rate," Opell said. "It is important to more fully understand these effects as material science moves toward producing environmentally non-toxic and energy conservative adhesives inspired by spider thread glycoprotein."

"The work by Opell's research team provides insight on a novel approach used by spiders to withstand UVB light," said Ali Dhinojwala, H.A. Morton Professor in Polymer Science at the University of Akron.

"Currently, we add UV stabilizers to prevent degradation of polymers that are exposed to UVB light. Inspired by this study we can learn from the chemistry of spider glue to design new molecules to improve resistance to UVB light."

While Dhinjowala was not involved in this particular study, he has collaborated with Opell on other spider glue projects, such as a study on humidity's effect on spider glue supported by the National Science Foundation.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Virginia Tech
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Studying Hypervelocity Impact Phenomena
Herts, UK (SPX) Oct 27, 2015
Using a Specialised Imaging SIM8 ultra fast framing camera researchers at the Thiot Ingenierie Shock Physics Laboratory have been able study high velocity impacts of aluminium spheres against an aluminum target at velocities in excess of 4000 m/s. Interest in hypervelocity has traditionally been driven by the military community but is increasingly of interest to the space / aerospace indus ... read more


TECH SPACE
Russia touts plan to land a man on the Moon by 2029

Watch worn by US astronaut on Moon sells for $1.6 mn

Europe-Russia Lunar mission will make them friends again

Mound near lunar south pole formed by unique volcanic process

TECH SPACE
Martian skywatchers provide insight on atmosphere, protect orbiting hardware

Landing site recommended for ExoMars 2018

You too can learn to farm on Mars

The Martian Astrobiologist

TECH SPACE
NASA Marks Completion of Test Version of Key SLS Propulsion System

Lockheed begins full-scale assembly and test of Orion

The Study of Science through Popular Movies

Reentry data will help improve prediction models

TECH SPACE
The Last Tiangong

China aims to go deeper into space

Latest Mars film bespeaks potential of China-U.S. space cooperation

Exhibition on "father of Chinese rocketry" opens in U.S.

TECH SPACE
Between the Ears: International Space Station Examines the Human Brain

High-Tech Methods Study Bacteria on the International Space Station

Astronaut Scott Kelly to break US spaceflight record

RSC Energia patented inflatable space module for ISS

TECH SPACE
Initial launcher assembly is completed for Arianespace's Vega mission with LISA Pathfinder

Ariane 5 is delivered for Arianespace's sixth heavy-lift mission of 2015

ORBCOMM Announces Launch Window For Second OG2 Mission

10th Anniversary of the Final Titan

TECH SPACE
The Exoplanet Era

Scientists Predict that Rocky Planets Formed from "Pebbles"

NASA's K2 Finds Dead Star Vaporizing a Mini 'Planet'

Cosmic 'Death Star' is destroying a planet

TECH SPACE
Researchers take cue from spider glue in efforts to create new materials

Researchers use common 3-D printer to rebuild heart

Super-slick material makes steel better, stronger, cleaner

NASA Takes Lasercom a Step Forward









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.