. 24/7 Space News .
EXO WORLDS
Researchers see beam of light from first confirmed neutron star merger emerge from behind sun
by Staff Writers
Warwick UK (SPX) Jul 03, 2018

File illustration.

A research team led by astronomers at the University of Warwick had to wait over 100 days for the sight of the first of confirmed neutron star merger to remerge from behind the glare of the sun.

They were rewarded with the first confirmed visual sighting of a jet of material that was still streaming out from merged star exactly 110 days after that initial cataclysmic merger event was first observed. Their observations confirm a key prediction about the aftermath of neutron star mergers.

The binary neutron star merger GW170817 occurred 130 million light years away in a galaxy named NGC 4993. It was detected in August 2017 by the Advanced Laser Interferometer Gravitational-Wave Observatory (Adv-LIGO), and by Gamma Ray Burst (GRB) observations, and then became the first ever neutron star merger to be observed and confirmed by visual astronomy.

After a few weeks the merged star then passed behind the glare of our sun leaving it effectively hidden from astronomers until it remerged from that glare 100 days after the merger event.

It was at that point that the University of Warwick research team were able to use the Hubble Space Telescope to see the star was still generating a powerful beam of light in a direction that, while off centre to the Earth, was starting to spread out in our direction.

Their research has just been published in a paper entitled: "The optical afterglow of the short gamma-ray burst associated with GW170817" in Nature Astronomy's website at 4pm UK time on Monday 02 July 2018.

The lead author of the paper, Dr Joe Lyman from the University of Warwick's Department of Physics, said:

"Early on, we saw visible light powered by radioactive decay of heavy elements, over a hundred days later and this has gone, but now we see a jet of material, ejected at an angle to us, but at almost of the speed of light. This is quite different than some people have suggested, that the material wouldn't come out in a jet, but in all directions."

Professor Andrew Levan from the University of Warwick's Department of Physics, another of the papers leading authors added:

"If we'd looked straight down this beam we'd have seen a really powerful burst of gamma-ray. This means that it is quite likely that every neutron star that mergers actually creates a gamma-ray burst, but we only see a small fraction of them because the jet doesn't line up all that often. Gravitational waves are a whole new way to find this kind of event, and they might be more common than we think."

These observations confirm the prediction made by the second author of the paper, Dr Gavin Lamb from the University of Leicester's Department of Physics and Astronomy, said that these types of events will reveal the structure of these jets of material travelling close to the speed of light:

"The behaviour of the light from these jets, how it brightens and fades, can be used to determine the velocity of the material throughout the jet. As the afterglow brightens we are seeing deeper into the jet structure and probing the fastest components. This will help us understand how these jets of material, travelling close to the speed of light, are formed and how they are accelerated to these phenomenal velocities."


Related Links
University of Warwick
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EXO WORLDS
Astronomers Discover New Way for Giant Planets to Evolve
Preston UK (SPX) Jul 02, 2018
New research into the early stages of planet formation, published in the Monthly Notices of the Royal Astronomical Society, suggests that there may be more giant planets - most at least 10 times as big as Jupiter - orbiting at large distances from their host star than we previously thought. Using supercomputers, researchers at the University of Central Lancashire (UCLan) and Nagoya University in Japan have analysed how young planets interact with their host protoplanetary disc - the rotating disc ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
NASA leverages public and private partnerships for space science with AI boost

It's in the blood: guiding rafts down Poland's mountain gorge

New head of 'space nation' aims for the stars

Hague, Ovchinin talk ISS mission during presser

EXO WORLDS
China aims to outstrip NASA with super-powerful rocket

Dragon delivers some ICE

Looking to the Future with Ariane 6 and Vega C Launchers for Asia-Pacific Customers

'Flying brain' blasts off on cargo ship toward space station

EXO WORLDS
Mars valleys traced back to precipitation

The meteorite 'Black Beauty' expands the window for when life might have existed on Mars

Precipitation explains Mars' fluvial patterns, astronomers claim

Opportunity sleeps during a planet-encircling dust storm

EXO WORLDS
China Rising as Major Space Power

China launches new-tech experiment twin satellites

China confirms reception of data from Gaofen-6 satellite

Experts Explain How China Is Opening International Space Cooperation

EXO WORLDS
GomSpace and Aerial Maritime Ltd enter MOU for delivery and operation of a global constellation

SSL ships first of 3 ComSats slated for launch this summer

Forget Galileo - UK space sector should look to young stars instead

A milestone in securing ESA's future role in the global exploration of space

EXO WORLDS
Electronic skin stretched to new limits

Scientists use a photonic quantum simulator to make virtual movies of molecules vibrating

Clearing out space junk, one step at a time

RemoveDEBRIS spacecraft launched from ISS with Airbus space debris capture removal technology

EXO WORLDS
SwRI scientists find evidence of complex organic molecules from Enceladus

Newly discovered Xenomorph wasp has alien-like lifecycle

More clues that Earth-like exoplanets are indeed Earth-like

Astronomers Discover New Way for Giant Planets to Evolve

EXO WORLDS
Webb Telescope to target Jupiter's Great Red Spot

Charon at 40: four decades of discovery on Pluto's largest moon

A dark and stormy Jupiter

NASA shares more Pluto images from New Horizons









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.