. 24/7 Space News .
ENERGY TECH
Researchers optimize the assembly of micro meso and macroporous carbon for Li-S batteries
by Staff Writers
Washington DC (SPX) Feb 10, 2017


Based on the traditional S/C cathode, the effects of surface area, total pore volume and pore size distribution of carbon pores on performances of Li-S batteries are compared. In addition, on the premise of identically high sulfur content, the relation of the micro/meso/macropore volume ratio with the capacity, voltage plateau, rate capability, and cycle stability of Li-S battery are investigated.

Li-S batteries are considered as promising alternatives for Li-ion batteries in the new generation of energy storages, due to high specific capacity (1675 mAh/g) and energy density (2600 mWh/g) of sulfur. But the poor conductivity of sulfur and severe shuttle effect of reaction intermediates destory the stability of this system.

A variety of porous carbon materials have been applied as sulfur host to improve the performances of Li-S batteries for high conductivity, specific surface area and absorption effect. However, what kind of porous carbon would be the optimal choice to accommodate active material? And Which characteristic of carbon pores should be emphasized?

A team of researchers from the School of Materials Science and Engineering and School of Electronic Science and Applied Physics at Hefei University of Technology demostrated that pore size distribution substantially influences the performances of cathode rather than specific surface area and total pore volume.

Furthermore, an optimized assembly of micro/meso/macroporous carbon enables cathode present greatly improved electrochemical performances, in which micropore-volume-ratio to the total pore volume dominates cycling stability of batteries, meso/macropore-volume-ratio influences spaces for sulfur loading and channels to ion transfer.

This research provides a direction of fabricating porous materials for energy storage.The report appears in the latest issue of the journal NANO.

Based on the traditional S/C cathode, the effects of surface area, total pore volume and pore size distribution of carbon pores on performances of Li-S batteries are compared. In addition, on the premise of identically high sulfur content, the relation of the micro/meso/macropore volume ratio with the capacity, voltage plateau, rate capability, and cycle stability of Li-S battery are investigated.

Among the samples, the porous carbon possesses the largest micropore volume ratio of 47.54% while a medium specific surface area of 1217 m2/g and inferior total pore volume of 0.54 cm3/g presents the highest initial discharge specific capacity of 1327 mAh/g and retention of 630 mAh/g over 100 cycles at 0.2C rate along with the best rate capability. The conclusions in this study can be directly applied in material fabrication for other systems of energy storage and even as criterions for further modification of Li-S batteries based on carbon material.

This research was supported by the "Strategic Priority Research Program" of the Chinese Academy of Science (NO. XDA03040000) and the Fundamental Research Funds for the Central Universities (NO. 103-4115100010) of China.


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
World Scientific
Powering The World in the 21st Century at Energy-Daily.com






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
How to recycle lithium batteries
Washington DC (SPX) Feb 08, 2017
Rechargeable lithium ion batteries power our phones and tablets they drive us from A to B in electric vehicles, and have many applications besides. Unfortunately, the devices that they power can fail and the batteries themselves are commonly only usable for two to three years. As such, there are millions batteries that must be recycled. Research published in the International Journal of En ... read more


ENERGY TECH
NASA to develop oxygen recovery technologies for future deep space missions

Art and space enter a new dimension

Russia's first private space tourism craft flight test set for 2020

Next SpaceX mission will deliver slew of experiment payloads to ISS

ENERGY TECH
Airbus Safran Launchers: 77th consecutive successful launch for Ariane 5

SpaceX poised to launch cargo from historic NASA pad

Airbus Safran Launchers: 77th consecutive successful launch for Ariane 5

India puts record 104 satellites into orbit

ENERGY TECH
Opportunity passes 44 kilometers of surface travel after 13 years

Scientists shortlist three landing sites for Mars 2020

Scientists say Mars valley was flooded with water not long ago

ISRO saves its Mars mission spacecraft from eclipse

ENERGY TECH
Chinese cargo spacecraft set for liftoff in April

China looks to Mars, Jupiter exploration

China's first cargo spacecraft to leave factory

China launches commercial rocket mission Kuaizhou-1A

ENERGY TECH
Iridium Announces Target Date for Second Launch of Iridium NEXT

Italy, Russia working closely on Mars exploration, Earth monitoring satellites

NASA seeks partnerships with US companies to advance commercial space technologies

A New Space Paradigm

ENERGY TECH
Most stretchable elastomer for 3-D printing

After 15 years, SABER on TIMED Still Breaks Ground from Space

ANU scientists make new high-tech liquid materials

Curtiss-Wright offers COTS Module for measuring microgravity acceleration

ENERGY TECH
Exoplanetary moons formed by giant impacts could be detected by Kepler

The heart of a far-off star beats for its planet

Astronomy team finds more than 100 exoplanet candidates

Possibility of Silicon-Based Life Grows

ENERGY TECH
NASA receives science report on Europa lander concept

New Horizons Refines Course for Next Flyby

It's Never 'Groundhog Day' at Jupiter

Public to Choose Jupiter Picture Sites for NASA Juno









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.