. 24/7 Space News .
TECH SPACE
Researchers list '7 chemical separations to change the world'
by Staff Writers
Atlanta GA (SPX) Apr 29, 2016


Thermally based industrial chemical separation processes such as distillation now account for 10 to 15 percent of the world's annual energy use. Researchers at the Georgia Institution of Technology are suggesting seven energy-intensive separation processes they believe should be the top targets for research into low-energy purification technologies. Shown are (l-r) David Sholl and Ryan Lively. Image courtesy Rob Felt, Georgia Tech. For a larger version of this image please go here.

Thermally-based industrial chemical separation processes such as distillation now account for 10 to 15 percent of the world's annual energy use. Slaking the global thirst for energy could therefore get a substantial boost from improved technologies for producing fuels, plastics, food and other products with reduced inputs of energy.

In a comment article published April 26 in the journal Nature, two researchers from the Georgia Institute of Technology suggest seven energy-intensive separation processes they believe should be the top targets for research into low-energy purification technologies. Beyond cutting energy use, improved techniques for separating chemicals from mixtures would also reduce pollution, cut carbon dioxide emissions - and open up new ways to obtain critical resources the world needs.

Technologies applicable to those separation processes are at varying stages of development, the authors note. These alternative processes are now under-developed or expensive to scale up, and making them feasible for large-scale use could require a significant investment in research and development.

"We wanted to highlight how much of the world's energy is used for chemical separations and point to some areas where large advances could potentially be made by expanding research in these areas," said David Sholl, one of the article's authors and chair of Georgia Tech's School of Chemical and Biomolecular Engineering. "These processes are largely invisible to most people, but there are large potential rewards - to both energy and the environment - for developing improved separation processes in these areas."

In the United States, substituting non-thermal approaches for purifying chemicals could reduce energy costs by $4 billion per year in the petroleum, chemical and paper manufacturing sectors alone. There's also a potential for reducing carbon dioxide emissions by 100 million tons per year.

"Chemical separations account for about half of all U.S. industrial energy use," noted Ryan Lively, an assistant professor in Georgia Tech's School of Chemical and Biomolecular Engineering and the article's second author. "Developing alternatives that don't use heat could dramatically improve the efficiency of 80 percent of the separation processes that we now use."

Dubbed the "seven chemical separations to change the world," the list is not intended to be exhaustive, but includes:

+ Hydrocarbons from crude oil. Hydrocarbons from crude oil are the main ingredients for making fuels, plastics and polymers - keys to the world's consumer economy. Each day, the article notes, refineries around the world process around 90 million barrels of crude oil, mostly using atmospheric distillation processes that consume about 230 gigawatts of energy per year, the equivalent of the total 2014 energy consumption of the United Kingdom. Distillation involves heating the oil and then capturing different compounds as they evaporate at different boiling points. Finding alternatives is difficult because oil is complex chemically and must be maintained at high temperatures to keep the thick crude flowing.

+ Uranium from sea water. Nuclear power could provide additional electricity without boosting carbon emissions, but the world's uranium fuel reserves are limited. However, more than four billion tons of the element exist in ocean water. Separating uranium from ocean water is complicated by the presence of metals such as vanadium and cobalt that are captured along with uranium in existing technologies. Processes to obtain uranium from sea water have been demonstrated on small scales, but those would have to be scaled up before they can make a substantial contribution to the expansion of nuclear power.

+ Alkenes from alkanes. Production of certain plastics requires alkenes - hydrocarbons such as ethane and propene, whose total annual production exceeds 200 million tons. The separation of ethene from ethane, for instance, typically requires high-pressure cryogenic distillation at low temperatures. Hybrid separation techniques that use a combination of membranes and distillation could reduce energy use by a factor of two or three, but large volumes of membrane materials - up to one million square meters at a single chemical plant - could be required for scale-up.

+ Greenhouse gases from dilute emissions. Emission of carbon dioxide and hydrocarbons such as methane contribute to global climate change. Removing these compounds from dilute sources such as power plant emissions can be done using liquid amine materials, but removing the carbon dioxide from that material requires heat. Less costly methods for removing carbon dioxide are needed.

+ Rare earth metals from ores. Rare earth elements are used in magnets, catalysts and high-efficiency lighting. Though these materials are not really rare, obtaining them is difficult because they exist in trace quantities that must be separated from ores using complex mechanical and chemical processes.

+ Benzene derivatives from each other. Benzene and its derivatives are essential to production of many polymers, plastics, fibers, solvents and fuel additives. These molecules are now separated using distillation columns with combined annual energy usage of about 50 gigawatts. Advances in membranes or sorbents could significantly reduce this energy investment.

+ Trace contaminants from water. Desalination is already critical to meeting the need for fresh water in some parts of the world, but the process is both energy and capital intensive, regardless of whether membrane or distillation processes are used. Development of membranes that are both more productive and resistant to fouling could drive down the costs.

Sholl and Lively conclude the paper by suggesting four steps that could be taken by academic researchers and policymakers to help expand the use of non-thermal separation techniques:

1.In research, consider realistic chemical mixtures and reflect real-world conditions,

2. Evaluate the economics and sustainability of any separation technique,

3. Consider the scale at which technology would have to be deployed for industry, and

4. Further expose chemical engineers and chemists in training to separation techniques that do not require distillation.

David S. Sholl and Ryan P. Lively, "Seven chemical separations to change the world," (Nature, Vol. 532, 2016).




Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Georgia Institute of Technology
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
ORNL researchers discover new state of water molecule
Oak Ridge TN (SPX) Apr 29, 2016
Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states. In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of water molecules confined in hexagonal ult ... read more


TECH SPACE
First rocket made ready for launch at Vostochny spaceport

Supernova iron found on the moon

Russia to shift all Lunar launches to Vostochny Cosmodrome

Lunar lava tubes could help pave way for human colony

TECH SPACE
Mars' surface revealed in unprecedented detail

NASA rocket fuel pump tests pave way for methane-fueled Mars lander

Opportunity completes mini-walkabout

Curiosity Mars Rover crosses rugged plateau

TECH SPACE
US to move more assets into deep space over next 4 years

Simulators give astronauts glimpse of future flights

When technology bites back

Menstruation in spaceflight: Options for astronauts

TECH SPACE
China's long march into space

China's top astronaut goes to "space camp"

South China city gears up for satellite tourism

China testing own reusable rocket technologies

TECH SPACE
Russia delays space crew's return to Earth

15 years of Europe on the International Space Station

US-Russia Space Projects Set Example of Good Cooperation

Russia, US discuss boosting efficiency of cooperation at ISS

TECH SPACE
Soyuz demonstrates Arianespace mission flexibility

SpaceX vows to send capsule to Mars by 2018

India to test Reusable Launch Vehicle in June

Soyuz meets its multi-satellite payload for Friday's Arianespace launch

TECH SPACE
On the Road to Finding Other Earths

Kepler spacecraft recovered and returned to the K2 Mission

Lone planetary-mass object found in family of stars

University of Massachusetts Lowell PICTURE-B Mission Completed

TECH SPACE
Model makes designing new antennas orders of magnitude faster

Team builds first quantum cascade laser on silicon

Companies named for Navy's open RF program

All Belgians to get iodine pills in case of nuclear accident: report









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.