. 24/7 Space News .
WATER WORLD
Researchers discover sediment size matters in high-elevation erosion rates
by Staff Writers
Laramie WY (SPX) Nov 23, 2015


Claire Lukens, a UW doctoral student co-author of a paper in PNAS, samples sediment from hill slopes in Inyo Creek in California. Hill slope samples were used to determine the intensity of chemical weathering across the landscape, which may help explain why the size of eroded sediment varies from place to place. Image courtesy Marlie Malone Photo. For a larger version of this image please go here.

When it comes to sediment in the High Sierra, size does matter, according to two University of Wyoming researchers. For the past four summers, Cliff Riebe, a UW associate professor in the Department of Geology and Geophysics, and Claire Lukens, a UW doctoral student majoring in geology, have studied sediment in Inyo Creek, in the High Sierra in California.

The two found that cold, steep, high-elevation slopes with less vegetation produce coarser and larger sediment than low-elevation, gentle slopes. This finding quantifies how sediment production varies with topography and suggests that variations in climate, topography and weathering rates may shape the evolution of mountain landscapes by influencing sediment size.

Riebe is lead author of a paper, titled "Climate and Topography Control the Size and Flux of Sediment Produced on Steep Mountain Slopes," published online Nov. 16 in the Proceedings of the National Academy of Sciences (PNAS). Lukens, from Seattle, is co-author. The journal is one of the world's most prestigious multidisciplinary scientific serials, with coverage spanning the biological, physical and social sciences.

Both the size and flux of sediment from slopes can influence channel incision, making sediment production and erosion central to the interplay of climate and tectonics in landscape evolution, Riebe says.

"Rivers need tools to cut into their beds," Riebe says. "Water alone can't do the job. And the bigger the sediment is, the easier it is for the river to carve into the landscape. So, when it comes to sediment, it turns out that size really does matter."

"Sediment can be as large as boulders at higher elevations and as fine as sand at lower elevations on the landscape," Lukens adds. "We know this is true from our analyses of sediment in the stream. In effect, we are using geochemistry to interrogate stream sediment about where it comes from and how fast it is eroding."

Erosion rates commonly are measured using cosmogenic nuclides, which serve as tracers of erosion because they accumulate in minerals in the uppermost few meters of rock and soil during the exhumation to the landscape surface. For example, the isotope beryllium 10 is produced from oxygen by nuclear reactions in quartz as the mineral rises to the surface.

Riebe and Lukens combined this technique with another sediment-tracing tool called detrital thermochronometry, which identifies the elevations of hill slopes where sediment was produced by weathering of underlying bedrock. The two used computer simulations to determine the statistical significance of their findings.

"This is the first time these tools have been combined in this way," Lukens says.

For a long time, geologists have been able to quantify how fast sediment is eroding from landscapes. Until this UW research, there has been no complementary method to quantify how the size distribution of sediment particles varies across slopes where the sediment is produced from bedrock by weathering and erosion.

Leonard Sklar, a professor of earth and climate sciences at San Francisco State University, and David Shuster, an associate professor of earth and planetary science at the University of California-Berkeley, were other co-authors of the paper.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Wyoming
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
WATER WORLD
Shocking new way to get the salt out
Boston MA (SPX) Nov 20, 2015
As the availability of clean, potable water becomes an increasingly urgent issue in many parts of the world, researchers are searching for new ways to treat salty, brackish or contaminated water to make it usable. Now a team at MIT has come up with an innovative approach that, unlike most traditional desalination systems, does not separate ions or water molecules with filters, which can become c ... read more


WATER WORLD
Gaia's sensors scan a lunar transit

SwRI scientists explain why moon rocks contain fewer volatiles than Earth's

All-female Russian crew starts Moon mission test

Russian moon mission would need 4 Angara-A5V launches

WATER WORLD
A witness to a wet early Mars

NASA completes heat shield testing for future Mars exploration vehicles

Curiosity Mars Rover Heads Toward Active Dunes

Upgrade Helps NASA Study Mineral Veins on Mars

WATER WORLD
XCOR develops Lynx Simulator

Orion ingenuity improves manufacturing while reducing mass

Orion's European module ready for testing

General Dynamics demos SGSS Command and Control Infrastructure for NASA

WATER WORLD
China to launch Dark Matter Satellite in mid-December

China to better integrate satellite applications with Internet

China's satellite expo opens

New rocket readies for liftoff in 2016

WATER WORLD
Space-grown flowers will be new year blooms on International Space Station

Cygnus Launch Poised to Bolster Station Science, Supplies

Progress cargo spacecraft to be launched Dec 21

Space station power short circuits, system repairs needed

WATER WORLD
NASA Selects New Technologies for Parabolic Flights and Suborbital Launches

United Launch Alliance exits launch competition, leaving SpaceX

Spaceport America opens up two new campuses

Recycled power plant equipment bolsters ULA in its energy efficiency

WATER WORLD
Forming planet observed for first time

UA researchers capture first photo of planet in making

Rocket Scientists to Launch Planet-Finding Telescope

5400mph winds discovered hurtling around planet outside solar system

WATER WORLD
Primordial goo used to improve implants

From nanocrystals to earthquakes, solid materials share similar failure characteristics

UW team refrigerates liquids with a laser for the first time

Network analysis shows systemic risk in mineral markets









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.