Subscribe free to our newsletters via your
. 24/7 Space News .




CHIP TECH
Researchers create and control spin waves for enhanced data processing
by Staff Writers
New York NY (SPX) Nov 17, 2014


A team of NYU and University of Barcelona physicists has developed a method to control the movements occurring within magnetic materials, which are used to store and carry information. The breakthrough could simultaneously bolster information processing while reducing the energy necessary to do so.

A team of New York University and University of Barcelona physicists has developed a method to control the movements occurring within magnetic materials, which are used to store and carry information. The breakthrough could simultaneously bolster information processing while reducing the energy necessary to do so.

Their method, reported in the most recent issue of the journal Nature Nanotechnology, manipulates "spin waves," which are waves that move in magnetic materials. Physically, these spin waves are much like water waves--like those that propagate on the surface of an ocean. However, like electromagnetic waves (i.e., light and radio waves), spin waves can efficiently transfer energy and information from place to place.

The challenge, scientists have found, is developing a means to create and control them.

In the Nature Nanotechnology study, the NYU-UB researchers demonstrated how this could be achieved.

"Spin waves have great potential to improve information processing and make it more energy efficient," says Andrew Kent, a professor in NYU's Department of Physics and the paper's senior author.

"Our results show that it's possible to both create and store spin wave energy in remarkably small spaces. The next steps are to understand how far these waves can propagate and how best to encode information in them."

The study's other authors included Ferran Macia, a former NYU-UB Marie-Curie Fellow and now at the University of Barcelona, and Dirk Backes, a former NYU postdoctoral fellow and presently at the University of Cambridge.

Currently, electromagnetic waves in antennas can be converted into spin waves. However, the resulting spin waves have a long wavelength and propagate slowly. By contrast, short-wavelength spin waves can move over greater distances, more quickly, and with less energy, and thus present the possibility of improving a range of communications and electronic devices.

In the Nature Nanotechnology study, the researchers conducted a series of experiments in which they built nanometer scale electrical contacts to inject spin-polarized electrical currents into magnetic materials--a process developed to create and control the movements of its spin waves.

Specifically, by blending different magnetic forces they were able to trap them in a specific area--forming magnetic "droplets" that remained in place rather than propagating, thereby forming a stable energy source. Future research, the scientists say, would then focus on ways to move this localized energy or release it in the form of propagating spin waves.

"We've known that spin waves can propagate, but we've shown in this study that you can control them so they will localize in a specific spot," explains Kent.

"By changing the mix of magnetic forces on these droplets--such as with a electrical current or magnetic field--we should be able to get them to emit spin-waves, perhaps as energy bursts, that can encode information."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
New York University
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
Self-doping may be the key to superconductivity in room temperature
Linkoping, SWeden (SPX) Nov 14, 2014
Swedish materials researchers at Linkoping and Uppsala University and Chalmers University of Technology, in collaboration with researchers at the Swiss Synchrotron Light Source (SLS) in Switzerland investigated the superconductor YBa2Cu3O7-x (abbreviated YBCO) using advanced X-ray spectroscopy. Their findings are published in the Nature journal Science Reports. YBCO is a well-known c ... read more


CHIP TECH
After Mars, India space chief aims for the moon

China examines the three stages of lunar test run

China gears up for lunar mission after round-trip success

NASA's LRO Spacecraft Captures Images of LADEE's Impact Crater

CHIP TECH
Mars was warm enough for flowing water, but only briefly

Several Drives Push Opportunity Over 41-Kilometer Mark

Lockheed Martin Begins Final Assembly Of Next Mars Lander

China researchers plan Mars mission 'around 2020': state media

CHIP TECH
Tencent looks to the final travel frontier

ESA Commissions Airbus As contractor For Orion Service Module

Study Investigates How Men and Women Adapt Differently to Spaceflight

S3 concludes first phase of drop-tests

CHIP TECH
China publishes Earth, Moon photos taken by lunar orbiter

China plans to launch about 120 applied satellites

Mars probe to debut at upcoming air show

China to build global quantum communication network in 2030

CHIP TECH
Space station gets zero-gravity 3-D printer

NASA Commercial Crew Partners Continue System Advancements

Europe's 3D printer set for ISS

Astronaut turned Twitter star, Reid Wiseman, back on Earth

CHIP TECH
Soyuz Installed at Baikonur, Expected to Launch Wednesday

Time-lapse video shows Orion's move to Cape Canaveral launch pad

SpaceX chief Musk confirms Internet satellite plan

Orbital recommits to NASA Commercial program and Antares

CHIP TECH
Follow the Dust to Find Planets

NASA's TESS mission cleared for next development phase

ADS primes ESA's CHEOPS to detect and classify exoplanets

NASA's TESS Mission Cleared for Next Development Phase

CHIP TECH
New form of crystalline order good for thermoelectric uses

Paris pop-up store immortalises shoppers with 3D printed figurine

Eurofighter unveils 1.0-billion-euro radar upgrade

Supercomputing progress slows




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.