Subscribe free to our newsletters via your
. 24/7 Space News .




CHIP TECH
Researchers announce first phononic crystal that can be altered in real time
by Staff Writers
Bristol, UK (SPX) Apr 01, 2014


This is an acoustic metadevice capable of manipulating the acoustic space and controlling the propagation of waves. Image courtesy Mihai Caleap, University of Bristol.

Using an acoustic metadevice that can influence the acoustic space and can control any of the ways in which waves travel, engineers have demonstrated, for the first time, that it is possible to dynamically alter the geometry of a three-dimensional colloidal crystal in real time.

The colloidal crystals designed in the study, called metamaterials, are artificially structured materials that extend the properties of existing naturally occurring materials and compounds. The research by academics from the University of Bristol's Department of Mechanical Engineering is published online this week in PNAS (Proceedings of the National Academy of Sciences).

Dr Mihai Caleap, Research Associate in the Department of Mechanical Engineering, said: "We have been working on systems that are reconfigurable in real time with a view to creating genuinely active metamaterials.

"Such materials will allow researchers to gain unprecedented control over a range of optical and acoustic wave phenomena. To date, whilst numerous examples of metamaterials now exist, none are reconfigurable in three-dimensions."

The researchers used acoustic assembly to trap a suspension of microspheres in patterns resembling crystal lattices. The study showed the experimental realisation of a three-dimensional colloidal crystal that is reconfigurable in real time and that has the ability to rapidly alter its acoustic filtering characteristics.

Dynamically reconfigurable metamaterials based devices with optical or acoustic wavelengths from ten microns to ten cm could have a wide range of applications. In optics it could lead to new beam deflectors or filters for terahertz imaging and in acoustics it might be possible to create acoustic barriers that can be optimised depending on the changing nature of the incident sound. Further applications in reconfigurable cloaks and lenses are also now conceivable.

Bruce Drinkwater, Professor of Ultrasonics in the Department of Mechanical Engineering and co-author, said: "Our reconfigurable acoustic assembly method is an important step as it has clear advantages over other possible approaches, for example optical trapping and self-assembly.

"In particular, acoustic assembly is scalable with wavelength from microns to metres. The method will work on a vast range of materials, such as nearly all solid-fluid combinations, it will also enable almost any geometry to be assembled and it is cheap and easy to integrate with other systems."

Acoustically trapped colloidal crystals that are recon?gurable in real-time, Mihai Caleap and Bruce Drinkwater, PNAS, online early edition the week of March 31, 2014.

.


Related Links
University of Bristol
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





CHIP TECH
Computing with Slime
Bristol, UK (SPX) Apr 01, 2014
A future computer might be a lot slimier than the solid silicon devices we have today. In a study published in the journal Materials Today, European researchers reveal details of logic units built using living slime molds, which might act as the building blocks for computing devices and sensors. Andrew Adamatzky (University of the West of England, Bristol, UK) and Theresa Schubert (Bauhaus ... read more


CHIP TECH
Unique camera from NASA's moon missions sold at auction

Expeditions to the Moon: beware of meteorites

A Wet Moon

ASU camera creates stunning mosaic of moon's polar region

CHIP TECH
Mars-mimicking chamber explores habitability of other planets

Helpful Wind Cleans Solar Panels On Opportunity Mars Rover

NASA Mars Rover's Next Stop Has Sandstone Variations

Mars on Earth: vacuum chambers mimic the Red Planet

CHIP TECH
You've got mail: Clinton-to-space laptop up for auction

The NASA Z-2 Spacesuit Design Vote

E3-production - sustainable manufacturing

NASA Seeks Collaborative Partnerships With Commercial Space

CHIP TECH
Tiangong's New Mission

"Space Odyssey": China's aspiration in future space exploration

China to launch first "space shuttle bus" this year

China expects to launch cargo ship into space around 2016

CHIP TECH
Technical hitch delays US-Russia crew's ISS docking

New ISS Crew Wrapping Up Training for Launch

How astronauts survive diplomatic tensions in space

NASA Extends Lockheed Martin Contract to Support ISS

CHIP TECH
NASA Seeks Suborbital Flight Proposals

Arianespace Launches ASTRA 5B and Amazonas 4A

SpaceX Launch to the ISS Reset for March 30

Ariane 5 hardware arrives for next ATV mission

CHIP TECH
Lick's Automated Planet Finder: First robotic telescope for planet hunters

Space Sunflower May Help Snap Pictures of Planets

NRL Researchers Detect Water Around a Hot Jupiter

UK joins the planet hunt with Europe's PLATO mission

CHIP TECH
China's rare earth trade limits break global rules: WTO

Intel bets big on cloud, with stake in Cloudera

Happily surprised? Sadly angry? Computer tags emotions

Big Data keeps complex production running smoothly




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.