Free Newsletters - Space News - Defense Alert - Environment Report - Energy Monitor
. 24/7 Space News .




CARBON WORLDS
Researchers Optically Levitate a Glowing, Nanoscale Diamond
by Staff Writers
Rochester NY (SPX) Aug 21, 2013


Nick Vamivakas and Levi Neukirch in front of their experiment. Photo by J. Adam Fenster / University of Rochester.

Researchers at the University of Rochester have measured for the first time light emitted by photoluminescence from a nanodiamond levitating in free space. In a paper published this week in Optics Letters, they describe how they used a laser to trap nanodiamonds in space, and - using another laser - caused the diamonds to emit light at given frequencies.

The experiment, led by Nick Vamivakas, an assistant professor of optics, demonstrates that it is possible to levitate diamonds as small as 100 nanometers (approximately one-thousandth the diameter of a human hair) in free space, by using a technique known as laser trapping.

"Now that we have shown we can levitate nanodiamonds and measure photoluminescence from defects inside the diamonds, we can start considering systems that could have applications in the field of quantum information and computing," said Vamivakas. He said an example of such a system would be an optomechanical resonator.

Vamivakas explained that optomechanical resonators are structures in which the vibrations of the system, in this case the trapped nanodiamond, can be controlled by light. "We are yet to explore this, but in theory we could encode information in the vibrations of the diamonds and extract it using the light they emit."

Possible avenues of interest in the long-term with these nano-optomechanical resonators include the creation of what are known as Schrodinger Cat states (macroscopic, or large-scale, systems that are in two quantum states at once). These resonators could also be used as extremely sensitive sensors of forces - for example, to measure tiny displacements in the positions of metal plates or mirrors in configurations used in microchips and understand friction better on the nanoscale.

"Levitating particles such as these could have advantages over other optomechanical oscillators that exist, as they are not attached to any large structures," Vamivakas explained. "This would mean they are easier to keep cool and it is expected that fragile quantum coherence, essential for these systems to work, will last sufficiently long for experiments to be performed."

The future experiments that Vamivakas and his team are planning build on previous work at Rochester by Lukas Novotny, a co-author of the paper and now at ETH in Zurich, Switzerland. Novotny and his group showed previously that by tweaking the trapping laser's properties, a particle can be pushed towards its quantum ground state.

By linking the laser cooling of the crystal resonator with the spin of the internal defect it should be possible to monitor the changes in spin configuration of the internal defect - these changes are called Bohr spin quantum jumps - via the mechanical resonator's vibrations. Vamivakas explained that experiments like this would expand what we know about the classical-quantum boundary and address fundamental physics questions.

The light emitted by the nanodiamonds is due to photoluminescence. The defects inside the nanodiamonds absorb photons from the second laser - not the one that is trapping the diamonds - which excites the system and changes the spin. The system then relaxes and other photons are emitted. This process is also known as optical pumping.

The defects come about because of nitrogen vacancies, which occur when one or more of the carbon atoms in diamond is replaced by a nitrogen atom. The chemical structure is such that at the nitrogen site it is possible to excite electrons, using a laser, between different available energy levels. Previous experiments have shown that these nitrogen vacancy centers in diamonds are good, stable sources of single photons, which is why the researchers were keen to levitate these particles.

Using lasers to trap ions, atoms and more recently larger particles is a well-established field of physics. Nanodiamonds, however, had never been levitated. To position these 100 nanometers diamonds in the correct spot an aerosol containing dissolved nanodiamonds sprays into a chamber about 10 inches in diameter, where the laser's focus point is located.

The diamonds are attracted to this focus point and when they drift into this spot they are trapped by the laser. Graduate student Levi Neukirch explains that sometimes "it takes a couple of squirts and in a few minutes we have a trapped nanodiamond; other times I can be here for half an hour before any diamond gets caught. Once a diamond wanders into the trap we can hold it for hours."

The Rochester researchers collaborated on this paper with Lukas Novotny, formerly at the University of Rochester and now at ETH Zurich, Switzerland, and with Jan Gieseler and Romain Quidant, at ICFO in Barcelona, Spain.

.


Related Links
University of Rochester
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





CARBON WORLDS
New Twist in the Graphene Story
Berkeley CA (SPX) Aug 21, 2013
Researchers with the U.S. Department of Energy Lawrence Berkeley National Laboratory (Berkeley Lab) have discovered a unique new twist to the story of graphene, sheets of pure carbon just one atom thick, and in the process appear to have solved a mystery that has held back device development. Electrons can race through graphene at nearly the speed of light - 100 times faster than they move ... read more


CARBON WORLDS
NASA Selects Launch Services Contract for OSIRIS-REx Mission

Environmental Controls Move Beyond Earth

Bad night's sleep? The moon could be to blame

Moon Base and Beyond

CARBON WORLDS
Snapping Pictures of the Martian Moons

Mars Rover Opportunity Working at Edge of 'Solander'

MRO Swapping Motion-Sensing Units

Opportunity Reaches Base of 'Solander Point'

CARBON WORLDS
Next Generation of Explorers Takes the Stage

Has Voyager 1 Left The Solar System?

Groundbreaking space exploration research at UH

Test at Naval Station Proves Recovery Operations for Orion

CARBON WORLDS
China launches three experimental satellites

Medical quarantine over for Shenzhou-10 astronauts

China's astronauts ready for longer missions

Chinese probe reaches record height in space travel

CARBON WORLDS
Italian astronaut recounts spacewalk drowning terror

ISS Boosting Biological Research in Orbit

Japanese Cargo Craft Captured, Berthed to ISS

Japanese Cargo Spacecraft Docks with ISS

CARBON WORLDS
ISRO pins hopes on GSLV-D5

Lockheed Martin Selects CubeSat Integrators for Athena to Enhance Launch Systems Integration

Russia to resume Proton-M rocket launches in mid-September

Roscosmos denies plans to launch Proton rocket from Baikonur on Sept 15

CARBON WORLDS
Study: Planets might be 'born free' without a parent star

Distant planet sets speed record by orbiting its star every 8.5 hours

Kepler planet hunter spacecraft is beyond repair: NASA

Astronomers Image Lowest-mass Exoplanet Around a Sun-like Star

CARBON WORLDS
Earliest known iron artifacts come from outer space

ORNL finding goes beyond surface of oxide films

Boeing Thin Disk Laser Exceeds Performance Requirements During Testing

Poisoning corrosion brings stainless magnesium closer




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement