Free Newsletters - Space News - Defense Alert - Environment Report - Energy Monitor
. 24/7 Space News .




TECH SPACE
Creating More Efficient High-Density Ceramics
by Staff Writers
Raleigh, NC (SPX) Feb 28, 2013


Raising the temperature along the grain boundary means that the material can be sintered at a much lower temperature, because sintering is done by selectively melting the grain boundaries to fuse the crystals together.

A researcher from North Carolina State University has developed a technique for creating high-density ceramic materials that requires far lower temperatures than current techniques - and takes less than a second, as opposed to hours. Ceramics are used in a wide variety of technologies, including body armor, fuel cells, spark plugs, nuclear rods and superconductors.

At issue is a process known as "sintering," which is when ceramic powders (such as zirconia) are compressed into a desired shape and exposed to high heat until the powder particles are bound together into a solid, but slightly porous, material. But new research from Dr. Jay Narayan, John C. Fan Distinguished Chair Professor of Materials Science and Engineering at NC State, may revolutionize the sintering process.

Narayan's new technique, selective-melt sintering, allows sintering of yttria-stabilized zirconia at 800 degrees Celsius (C) - instead of the conventional 1450 C. In addition, using the selective-melt sintering technique, it is possible to sinter zirconia at 800 C in less than a second, and create a material with no porosity at all. In contrast, traditional sintering techniques take four to five hours at 1450 C.

"This technique allows you to achieve 'theoretical density,' meaning it eliminates all of the porosity in the material," Narayan says. "This increases the strength of the ceramic, as well as improving its optical, magnetic and other properties."

The key to Narayan's approach is the application of an electric field, at approximately 100 volts per centimeter, to the material. When this field is applied, it creates subtle changes in the material's "grain boundaries" - where atoms from different crystals meet in the material. Namely, the field draws "defects" to the grain boundary. These defects consist of vacancies (missing atoms) which can carry charges. The defects are negatively charged and draw current from the electric field to the area - which raises the temperature along the grain boundary.

Raising the temperature along the grain boundary means that the material can be sintered at a much lower temperature, because sintering is done by selectively melting the grain boundaries to fuse the crystals together.

Normally you would have to apply enough heat to raise the mass of all the material to the melting point, even though you only need to melt the grain boundary. "Pre-heating" the grain boundary with an electric field is what allowed Narayan to lower the sintering temperature from 1450 C to 800 C and sinter the material much more quickly.

The work is described in two papers published online this month in Scripta Materialia. The papers are "Grain growth model for electric field-assisted processing and flash sintering of materials," and an invited viewpoint paper, "New mechanism for field-assisted processing and flash sintering of materials." Narayan is the sole author.

.


Related Links
North Carolina State University
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TECH SPACE
Tungstenite triangles emit light
London, UK (SPX) Feb 28, 2013
Researchers in the US have succeeded in growing single atomic layers of the naturally occurring mineral tungstenite for the first time. The sheets appear to have unusual photoluminescence properties that might be exploited in optics devices like lasers and light-emitting diodes. 2D materials have dramatically different electronic and mechanical properties from their 3D counterparts and so ... read more


TECH SPACE
Water On The Moon: It's Been There All Along

Building a lunar base with 3D printing

US, Europe team up for moon fly-by

Russia to Launch Lunar Mission in 2015

TECH SPACE
Lab Instruments Inside Curiosity Eat Mars Rock Powder

First-ever space tourist plans mission to Mars

Mars rover ingests rock powder for tests

Opportunity Is On A Rock Hunt

TECH SPACE
Stanford scientist closes in on a mystery that impedes space exploration

U.S. research to be free online

NASA Creates Space Technology Mission Directorate

Educator Teams Fly On NASA Sofia Airborne Observatory

TECH SPACE
Welcome Aboard Shenzhou 10

Reshuffle for Tiangong

China to launch 20 spacecrafts in 2013

Mr Xi in Space

TECH SPACE
Record Number of Students Control ISS Camera

NASA briefly loses contact with space station

Temporary Comm Loss Interrupts Crew's Day

Low-Gravity Flights Will Aid ISS Fluids and Combustion Experiments

TECH SPACE
'Faulty Ukrainian Parts' Blamed for Zenit Launch Failure

The light-lift member of Arianespace's launcher family is readied for its second mission

SpaceX 2 Launch Set for March 1

NASA Releases Glory Taurus XL Launch Failure Report Summary

TECH SPACE
Scientists spot birth of giant planet

NASA's Kepler Mission Discovers Tiny Planet System

Kepler helps astronomers find tiny exo planet

Searching for a Pale Blue SPHERE in the Universe

TECH SPACE
Ancient Egyptian pigment points to new security ink technology

Laser mastery narrows down sources of superconductivity

In probing mysteries of glass, researchers find a key to toughness

Glasses.com turns heads with 3-D iPad app




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement