. 24/7 Space News .
STELLAR CHEMISTRY
Research reveals the crucial role of recycling in the evolution of life in our universe
by Staff Writers
Kent UK (SPX) Sep 18, 2019

For the first time, the physicists simulated the detailed formation of Protoplanetary nebula. These are astronomical objects that develop during a star's late evolution. They modelled the formation of the shell of materials that is released as the star ages. These shells form planetary nebulae, or ring-shaped clouds of gas and dust, which are visible in the night sky.

New research by astrophysicists at the University of Kent reveals vital clues about the role recycling plays in the formation of life in our universe.

By investigating the different stages in the life journey of stars and gaining new knowledge about their evolutionary cycle, scientists at the Centre for Astrophysics and Planetary Science have discovered more about a crucial stage in the emergence of life in our Universe. Their research reveals for the first time how matter discarded as stars die is recycled to form new stars and planets.

Scientists have long known that the materials that make up human life were not present during the beginnings of the universe. Elements such as carbon and oxygen form deep inside stars and are released when the stars explode. What has not been clear is what happens to these materials in the vast majority of stars which do not explode and how they are then extracted to contribute to the development of new planets and biospheres.

In their paper 'Numerical simulations of wind-driven protoplanetary nebulae - I. near-infrared emission', which was published by the Royal Astronomical Society on 12 September, Professor Michael Smith and PhD student Igor Novikov have discovered this vital missing link.

By carrying out 2-D modelling on their Forge supercomputer, which mapped the pattern of light emitted from stars under different environmental conditions, the research team were able to understand how the material ejected is transferred and mixed with interstellar gas to form new astronomical objects.

For the first time, the physicists simulated the detailed formation of Protoplanetary nebula. These are astronomical objects that develop during a star's late evolution. They modelled the formation of the shell of materials that is released as the star ages. These shells form planetary nebulae, or ring-shaped clouds of gas and dust, which are visible in the night sky.

The study revealed how the gas and energy expelled by stars are returned to the universe, and in what forms. It found that the elements produced by dying stars are transferred through a process of fragmentation and recycled into new stars and planets.

Professor Smith said: 'Initially, we were perplexed by the results of our simulations. We needed to understand what happens to the expelled shells from dying red giants. We proposed that the shells must be temporary, as if they stayed intact life could not exist in our universe and our planets would be unoccupied.

'The shells are not uniform. Most are likely to be cold and molecular. They disintegrate into protruding fingers and so lose their integrity. In contrast, warm atomic shells remain intact. This provides vital clues about how carbon and other materials are transferred and reused within our universe. Our civilisation happens to exist when the generation of recycled material is at its highest. That is probably no coincidence.'

Research paper


Related Links
University of Kent
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Scientists discover a new type of pulsating star
Santa Barbara CA (SPX) Aug 05, 2019
Scientists can tell a lot about a star by the light it gives off. The color, for example, reveals its surface temperature and the elements in and around it. Brightness correlates with a star's mass, and for many stars, brightness fluctuates, a bit like a flickering candle. A team of scientists led by UC Santa Barbara researcher Thomas Kupfer recently discovered a new class of these pulsators that vary in brightness every five minutes. Their results appeared in The Astrophysical Journal Letters. ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Russia mulls equipping cutting-edge cosmonaut emergency survival kit with firearm

Innovative model created for NASA to predict vitamin levels in spaceflight food

Testing and Training on the Boeing Starliner

A new journey into Earth for space exploration

STELLAR CHEMISTRY
Baikonur Cosmodrome Getting Ready for Last Launch of Russian Rocket With Ukrainian Parts

Fire forces Japan to cancel rocket launch to ISS

SES selects SpaceX to launch O3b mPOWER MEO communications system

China to launch Third Long March 5 by year end

STELLAR CHEMISTRY
3D models of Mars to aid ESA Rover in quest for ancient life

Mars 2020 Spacecraft Comes Full Circle

NASA Research Gives New Insight into How Much Atmosphere Mars Lost

'Martian CSI' Sheds Light on How Asteroid Impacts Generated Running Water Under Red Planet

STELLAR CHEMISTRY
China's KZ-1A rocket launches two satellites

China's newly launched communication satellite suffers abnormality

China launches first private rocket capable of carrying satellites

Chinese scientists say goodbye to Tiangong-2

STELLAR CHEMISTRY
First launch of UK's OneWeb satellites from Baikonur planned for Dec 19

Winning bootcamp ideas at Phi-week

Private Chinese firms tapping international space market

Iridium and Thales Expand Partnership to Deliver Aircraft Connectivity Services

STELLAR CHEMISTRY
Bolivia, with huge untapped reserves, gears up for soaring lithium demand

Spider silk, wood combination replicates material advantages of plastic

Shaken but not stirred: Konnect satellite completes vibration tests

China data centres set to consume more power than Australia: report

STELLAR CHEMISTRY
First water detected on potentially 'habitable' planet

First Water Detected on Planet in the Habitable Zone

The rare molecule weighing in on the birth of planets

Research redefines lower limit for planet size habitability

STELLAR CHEMISTRY
Stony-iron meteoroid caused August impact flash at Jupiter

Storms on Jupiter are disturbing the planet's colorful belts

ALMA shows what's inside Jupiter's storms

Young Jupiter was smacked head-on by massive newborn planet









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.