. 24/7 Space News .
EARLY EARTH
Research proposes new theories about nature of Earth's iron
by Staff Writers
Chicago IL (SPX) Mar 21, 2017


This artist's concept shows a high-speed collision in the early stages of planetary formation. Image courtesy NASA/JPL-Caltech.

New research challenges the prevailing theory that the unique nature of Earth's iron was the result of how its core was formed billions of years ago.

The study opens the door to competing theories about why levels of certain heavy forms of iron, known as isotopes, are higher on Earth than in other bodies in the solar system. The prevailing view attributes the Earth's anomalous iron composition to the formation of the planet's core.

But the study published Feb. 20 in Nature Communications suggests that the peculiar iron's isotopic signature developed later in Earth's history, possibly created by a collision between Earth and another planetary body that vaporized the lighter iron isotopes, or the churning of Earth's mantle, drawing a disproportionate amount of heavy iron isotopes to Earth's crust from its mantle.

Iron is one of the most abundant elements in the solar system, and understanding it is key to figuring out how Earth and other celestial bodies formed. The researchers compared the ratio of the heavier iron isotope Fe-56 to the lighter Fe-54 for Earth and extraterrestrial rocks, including those from the moon, Mars and ancient meteorites. They found that the ratio is significantly higher for Earth rocks than for extraterrestrial rocks, all of which have an identical ratio. Their research attempts to explain how that happened.

"The Earth's core formation was probably the biggest event affecting the Earth's history," said Jung-Fu Lin, professor of geosciences at the University of Texas at Austin and co-author of the paper. "In this study we say that there must be other origins than the Earth's formation for this iron isotopic anomaly."

Co-author Nicolas Dauphas, the Louis Block Professor of Geophysical Sciences at the University of Chicago, called the research groundbreaking "because of the synthesis of the materials analyzed, the technique to take the measurements and the data treatment."

The authors recreated the high pressure that characterized the conditions on Earth during the formation of its core. To do this, the researchers used a diamond anvil cell--a device capable of recreating pressures that exist deep inside planets--and were able to synthesize processes that would not be discernible otherwise.

"The diamond anvil cell has been used in this way before, but the difficulty is getting correct numbers," Dauphas said. "That requires great care in data acquisition and treatment because the signal the diamond anvil gives off is very small. One has to use sophisticated mathematical techniques to make sense of the measurements, and it took a dream team to pull this off."

The experiment sought to show that the high levels of heavy iron isotopes in Earth's mantle likely occurred during the formation of Earth's core. But the measurements show that it does not work, "so the solution to this mystery must be sought elsewhere," Dauphas said.

More research is needed to understand the core's formation and the reasons for Earth's unique iron isotopic signature.

Research paper: "Iron isotopic fractionation between silicate mantle and metallic core at high pressure," in Nature Communications, Feb. 20, 2017, by Jin Liu, Nicolas Dauphas, Mathieu Roskosz, Michael Y. Hu, Hong Yang, Wenli Bi, Jiyong Zhao, Esen E. Alp, Justin Y. Hu and Jung-Fu Lin. DOI: 10.1038/ncomms14377

EARLY EARTH
Recovery after 'great dying' was slowed by more extinctions
Austin TX (SPX) Mar 17, 2017
Researchers studying marine fossil beds in Italy have found that the world's worst mass extinction was followed by two other extinction events, a conclusion that could explain why it took ecosystems around the globe millions of years to recover. The extinction events are linked to climate change caused by massive volcanic activity, according to the study published in the journal PLOS ONE o ... read more

Related Links
University of Chicago
Explore The Early Earth at TerraDaily.com

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARLY EARTH
Russia to Build First New-Generation 'Federation' Spacecraft by 2021

NASA Selects New Research Teams to Further Solar System Research

Two more spacewalks for Thomas Pesquet

Trump's budget would cut NASA asteroid mission, earth science

EARLY EARTH
SpaceX cargo ship returns to Earth

Hitting the brakes at Alpha Centauri

N. Korea's Kim hails engine test as 'new birth' for rocket industry

N.Korea rocket test shows 'meaningful progress': South

EARLY EARTH
Does Mars Have Rings? Not Right Now, But Maybe One Day

ExoMars: science checkout completed and aerobraking begins

Mars Rover Tests Driving, Drilling and Detecting Life in Chile's High Desert

Opportunity Driving South to Gully

EARLY EARTH
China Develops Spaceship Capable of Moon Landing

Long March-7 Y2 ready for launch of China's first cargo spacecraft

China Seeks Space Rockets Launched from Airplanes

Riding an asteroid: China's next space goal

EARLY EARTH
OneWeb Satellites breaks ground on high-volume satellite manufacturing facility

Globalsat Sky and Space Global sign MoU for testing and offering satellite service in Latin America

Start-Ups at the Final Frontier

Russia probes murder of senior space official in jail

EARLY EARTH
Using lasers to create ultra-short pulses

The strangeness of slow dynamics

Ecosystem For Near-Earth Space Control

Airbus ships first high-power all-electric EUTELSAT 172B satellite to Kourou for Eutelsat

EARLY EARTH
Visualizing debris disk "roller derby" to understand planetary system evolution

Protostar blazes bright, reshaping its stellar nursery

Operation of ancient biological clock uncovered

Fossil or inorganic structure? Scientists dig into early life forms

EARLY EARTH
Scientists make the case to restore Pluto's planet status

ESA's Jupiter mission moves off the drawing board

NASA Mission Named 'Europa Clipper'

Juno Captures Jupiter Cloudscape in High Resolution









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.