Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Research On Self-Healing Concrete Yields Cost-Effective System To Extend Life Of Structures
by Staff Writers
Kingston RI (SPX) May 25, 2010


Pelletier noted that some researchers have laced the concrete with bacteria spores that secrete calcium carbonate to fill the cracks and pores, while others embedded glass capillaries with a healing agent, but the process of filling the capillaries with the agent is long and tedious.

Efforts to extend the life of structures and reduce repair costs have led engineers to develop "smart materials" that have self-healing properties, but many of these new materials are difficult to commercialize. A new self-healing concrete developed and tested by a graduate student at the University of Rhode Island, however, may prove to be cost-effective.

Michelle Pelletier, a URI master's degree candidate from Woonsocket, embedded a microencapsulated sodium silicate healing agent directly into a concrete matrix. When tiny stress cracks begin to form in the concrete, the capsules rupture and release the healing agent into the adjacent areas.

The sodium silicate reacts with the calcium hydroxide naturally present in the concrete to form a calcium-silica-hydrate product to heal the cracks and block the pores in the concrete. The chemical reaction creates a gel-like material that hardens in about one week.

"Smart materials usually have an environmental trigger that causes the healing to occur," explained Pelletier, who is collaborating on the project with URI Chemical Engineering Professor Arijit Bose. "What's special about our material is that it can have a localized and targeted release of the healing agent only in the areas that really need it."

In tests comparing a standard concrete mix to concrete containing two percent sodium silicate healing agent, Pelletier's healing mix recovered 26 percent of its original strength (after being stressed to near breaking) versus just 10 percent recovery by the standard mix. The URI student said that an increase in the quantity of healing agent would likely further improve the recovered strength of the concrete.

"Self-healing concrete is a big research field right now," she said. "But many of the approaches being taken by other researchers have not ended up being economically feasible for commercial production."

Pelletier noted that some researchers have laced the concrete with bacteria spores that secrete calcium carbonate to fill the cracks and pores, while others embedded glass capillaries with a healing agent, but the process of filling the capillaries with the agent is long and tedious.

Next up for Pelletier is a study to see if her sodium silicate healing agent could also act as a corrosion inhibitor.

"Building concrete is routinely fixed with steel reinforcement bars to compensate for low tensile strength, but they are extremely susceptible to corrosion," Pelletier said. "We are exploring if the release of the agent will result in corrosion inhibition by two mechanisms. First, the reduced water transport due to the filled pores and reduced interconnectivity within the matrix may result in less moisture reaching the metal and ultimately less corrosion. Also, silicates can deposit on the surface to form a protective film which may also help with reducing the corrosion rate of the steel rebars."

One additional advantage to the use of self-healing concrete is that it could reduce the significant CO2 emissions that result from concrete production. Because the production of concrete is very energy intensive - when mining, transportation and concrete plants are considered - the industry is responsible for about 10 percent of all CO2 emissions in the United States.

"If self-healing concrete can lengthen the life of the concrete and reduce maintenance and repairs, it will ultimately reduce the production of excess amounts of concrete and result in a decrease in CO2 emissions," she said.

.


Related Links
University of Rhode Island
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Investigating How Spiders Spin Their Silk, Researchers Unravel A Key Step
Munich, Germany (SPX) May 17, 2010
Five times the tensile strength of steel and triple that of the currently best synthetic fibers: Spider silk is a fascinating material. But no one has thus far succeeded in producing the super fibers synthetically. How do spiders form long, highly stable and elastic fibers from the spider silk proteins stored in the silk gland within split seconds? Scientists from the Technische Universita ... read more


TECH SPACE
Loral Announces Milestone in NASA Ames Project

Einstein And Einstein A: A Study In Crater Morphology

NASA Invites Public To Take Virtual Walk On Moon

LRO Team Helps Track Laser Signals To Russian Rover Mirror

TECH SPACE
Geometry Drives Launch Date For Mar Science Lab

Chinese Volunteer Chosen For Mars Test

Russia Announces Participants In Mars Flight Simulation Mission

Mars Rovers Set Surface Longevity Record

TECH SPACE
NASA Fixes Bug On Voyager 2

Aerojet Validates Engine Design For Orion Crew Exploration Vehicle

Japan rocket blasts off with 'space yacht' and Venus probe

Immune System Compromised During Spaceflight

TECH SPACE
Seven More For Shenzhou

China Signs Up First Female Astronauts

China To Launch Second Lunar Probe This Year

China, Bolivia to build communications satellite

TECH SPACE
STS-132 Crew Completes Inspection And Prepare For Landing

Crews Opening Rassvet Hatches And Prepares For Spacewalk

Atlantis astronaut complete final spacewalk

Atlantis astronauts complete second spacewalk

TECH SPACE
Ariane 5 Makes History With The ASTRA 3B And COMSATBw-2 Mission

Ariane 5 Is Poised For Launch With ASTRA 3B And COMSATBw-2

H2A Launches Six Satellites

Sea Launch Files Plan Of Reorganization

TECH SPACE
Exoplanetary System Offers Clues To Disturbed Past

Planet discovered lacking methane

'This Planet Tastes Funny,' According To Spitzer

Small, Ground-Based Telescope Images Three Exoplanets

TECH SPACE
Japanese team finds material that could make super disc

Research On Self-Healing Concrete Yields Cost-Effective System To Extend Life Of Structures

American Honour For Australian Space Tracking Stations

New Nanotech Discovery Could Lead To Breakthrough In Infrared Satellite Imaging




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement