Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
Recipe for a Universe
by Staff Writers
Vienna, Austria (SPX) Dec 16, 2013


Arjun Bagchi (right) is a physicist from India, currently holding a Lise-Meitner Fellowship, working with Daniel Grumiller (left) on holographic correspondences in flat spacetimes.

When soup is heated, it starts to boil. When time and space are heated, an expanding universe can emerge, without requiring anything like a "Big Bang". This phase transition between a boring empty space and an expanding universe containing mass has now been mathematically described by a research team at the Vienna University of Technology, together with colleagues from Harvard, the MIT and Edinburgh.

The idea behind this result is a remarkable connection between quantum field theory and Einstein's theory of relativity.

Everybody knows of the transitions between liquid, solid and gaseous phases. But also time and space can undergo a phase transition, as the physicists Steven Hawking and Don Page pointed out in 1983. They calculated that empty space can turn into a black hole at a specific temperature.

Can a similar process create a whole expanding universe such as ours? Daniel Grumiller from the Vienna University of Technology looked into this, together with colleagues from the USA and Great Britain. Their calculations show that there is indeed a critical temperature at which an empty, flat spacetime turns into an expanding universe with mass.

"The empty spacetime starts to boil, little bubbles form, one of which expands and eventually takes up all of spacetime", explains Grumiller.

For this to be possible, the universe has to rotate - so the recipe for creating the universe is "apply heat and stir". However, the required rotation can be arbitrarily small. In a first step, a spacetime with only two spatial dimensions was considered. "But there is no reason why the same should not be true for a universe with three spatial dimensions", says Grumiller.

Looking for the Structure of the Universe
Our own universe does not seem to have come into existence this way. The phase-transition model is not meant to replace the theory of the Big Bang. "Today, cosmologists know a lot about the early universe - we are not challenging their findings. But we are interested in the question, which phase transitions are possible for time and space and how the mathematical structure of spacetime can be described" says Grumiller.

The new theory is the logical next step after the so called "AdS-CFT correspondence", a conjecture put forward in 1997, which has strongly influenced fundamental physics research ever since. It describes a peculiar connection between theories of gravity and quantum field theories - two areas which, at first glance, do not have much in common.

In certain limiting cases, according to AdS-CFT correspondence, statements from quantum field theories can be translated into statements concerning gravitational theories and vice versa. This is almost as surprising as the idea of making statements about a stone falling to the ground by actually calculating the temperature of a hot gas. Two completely different areas are being connected - but it works.

In this kind of correspondence, the quantum field theory is always described in one fewer dimension than the gravitational theory. This is called "holographic principle". Similar to a two dimensional hologram which can depict a three dimensional object, a quantum field theory with two spatial dimensions can describe a physical situation in three spatial dimensions.

A Correspondence Principle for Flat Spacetimes
To do this, the gravitational calculations usually have to be done in an exotic kind of geometry - in so-called "Anti-de-Sitter-spaces", which are quite different from the flat geometry we are used to. However, it has been suspected for a while, that there may be a similar version of the "holographic principle" for flat spacetimes. But for a long time there haven't been any models showing this.

Last year, Daniel Grumiller and colleagues established such a model (in two spatial dimensions, for simplicity). This led to the current question; phase transitions in quantum field theories are well known. But for symmetry reasons this would mean that gravitational theories should exhibit phase transitions too.

"At first, this was a mystery for us", says Daniel Grumiller. "This would mean a phase transition between an empty spacetime and an expanding universe. To us, this sounded extremely implausible." But the calculations showed exactly that.

"We are only beginning to understand these remarkable correspondence relations", says Daniel Grumiller. Which new ideas about our own universe can be derived from this, is hard to say - only spacetime will tell.

A. Bagchi, S. Detournay, D. Grumiller qnd Joan Simon, Phys. Rev. Lett. 111, 181301 (2013); A. Bagchi, S. Detournay and D. Grumiller, Phys. Rev. Lett. 109, 151301 (2012)

.


Related Links
Vienna University of Technology
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
Collapse of the universe is closer than ever before
Odense, Denmark (SPX) Dec 13, 2013
Maybe it happens tomorrow. Maybe in a billion years. Physicists have long predicted that the universe may one day collapse, and that everything in it will be compressed to a small hard ball. New calculations from physicists at the University of Southern Denmark now confirm this prediction - and they also conclude that the risk of a collapse is even greater than previously thought. Sooner o ... read more


TIME AND SPACE
China's Lunar Lander May Provide Additional Science for NASA Spacecraft

China plans to launch Chang'e-5 in 2017

Mining the moon is pie in the sky for China: experts

Ancient crater could hold clues about moon's mantle

TIME AND SPACE
Opportunity Communications Remain Slow Due To Odyssey Issues

New Views of Mars from Sediment Mineralogy

NASA poised to launch Mars atmosphere probe

The Tough Task of Finding Fossils While Wearing a Spacesuit

TIME AND SPACE
IBM sees five tech-powered changes in next five years

European consortium space company to offer 'affordable' trips to space

Planning group calls for National Space Policy in Britain

Quails in orbit: French cuisine aims for the stars

TIME AND SPACE
Chinese sci-fi writers laud moon landing

China deploys 'Jade Rabbit' rover on moon

The Dragon Has Landed

Chinaese moon rover and lander photograph each other

TIME AND SPACE
Altitude of International Space Station raised

NASA mulls spacewalks to fix space station

NASA reports coolant loop problem at ISS

Space station cooling breakdown may delay Orbital launch

TIME AND SPACE
India to decide December 27 on GSAT-14 launch date

Arianespace orders 18 rockets for 2 bn euros

Iran sends second monkey into space

SpaceX to bid for rights to historic NASA launch pad

TIME AND SPACE
Astronomers solve temperature mystery of planetary atmospheres

Nearby failed stars may harbor planet

Innovative instrument probes close binary stars, may soon image exoplanets

Feature of Earth's atmosphere may help in search for habitable planets

TIME AND SPACE
Inertial Sensor Head shaken but not disturbed

Programming smart molecules

SOFS Take to Water

Rock points to potential diamond haul in Antarctica




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement