. 24/7 Space News .
TIME AND SPACE
RIT study suggests dying stars give newborn black holes a swift kick
by Staff Writers
Rochester NY (SPX) Jun 06, 2017


File image

New information gleaned from gravitational wave observations is helping scientists understand what happens when massive stars die and transform into black holes.

Rochester Institute of Technology researcher Richard O'Shaughnessy and collaborators reanalyzed the merging black holes detected by LIGO (Laser Interferometer Gravitational Wave Observatory) on Dec. 26, 2016.

"Using essentially freshman physics, we drew new insights about the most violent events in the universe," said O'Shaughnessy, an associate professor in RIT's School of Mathematical Sciences. He is also researcher in RIT's Center for Computational Relativity and Gravitation and a member of the LIGO Scientific Collaboration.

O'Shaughnessy presented his research findings at the American Astronomical Society meeting on June 5 in Austin, Texas. Physical Review Letters has accepted a paper co-authored by O'Shaughnessy, Davide Gerosa from Caltech and Daniel Wysocki from RIT.

The LIGO Scientific Collaboration cited O'Shaughnessy's research in the paper announcing its third discovery of gravitational waves that published in Physical Review Letters on June 1.

The current study reanalyzed the binary black holes, known as GW151226. It has been the only time LIGO has reported binary black holes must be spinning, O'Shaughnessy said. LIGO's previous measurements suggested that the larger mass orbited the other at a slightly tilted angle.

O'Shaughnessy and his team link the black hole's misalignment to when it formed from the death of a massive star. The force of the stellar explosion and collapse expelled the newborn black hole with a "natal kick," causing this misalignment, the authors suggest.

Natal kicks are thought to occur during the formation of neutron stars, which are created from the death of less massive stars than the progenitors of LIGO's sources. O'Shaughnessy's team suggests this phenomenon could also apply to binary black holes, which orbit each other.

"My collaborators and I tried to constrain the strength of these natal kicks based on LIGO's observation," O'Shaughnessy said. "If it formed from an isolated pairs of stars, we conclude strong black hole natal kicks were required. That's an exciting challenge for models of how massive stars explode and collapse."

Gerosa adds, "Our study corroborates years of tentative but suggestive evidence that black holes might have received these kicks. And with just one of LIGO's observations, we learned something about how a star exploded billions of years ago. That's the promise of gravitational wave astronomy in action."

TIME AND SPACE
The world's most powerful X-ray laser beam creates 'molecular black hole'
Menlo Park CA (SPX) Jun 01, 2017
When scientists at the Department of Energy's SLAC National Accelerator Laboratory focused the full intensity of the world's most powerful X-ray laser on a small molecule, they got a surprise: A single laser pulse stripped all but a few electrons out of the molecule's biggest atom from the inside out, leaving a void that started pulling in electrons from the rest of the molecule, like a black ho ... read more

Related Links
RIT's Center for Computational Relativity and Gravitation
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Roscosmos Says Cooperation With NASA Unaffected by 'Political Outbursts'

Russia's New 'Federation' Spacecraft to be Launched from Baikonur in 2022

Astronauts return after marathon ISS mission

From 2D to 3D, Space Station Microscope Gets an Upgrade

TIME AND SPACE
SpaceX's first recycled Dragon arrives at space station

SpaceX blasts off cargo using recycled spaceship

India shows off space prowess with launch of mega-rocket

Eutelsat signs new launch contract with Arianespace

TIME AND SPACE
Study estimates amount of water needed to carve Martian valleys

Collateral damage from cosmic rays increases cancer risks for Mars astronauts

Curiosity Peels Back Layers on Ancient Martian Lake

Student-Made Mars Rover Concepts Lift Off

TIME AND SPACE
Spotlight: First China-designed experiment flies to space station

News Analysis: U.S.-China space freeze may thaw with new commercial pathway

China willing to cooperate in peaceful space exploration: Xi

California Woman Charged for Trying to Hand Over Sensitive Space Tech to China

TIME AND SPACE
Thomas Pesquet returns to Earth

Propose a course idea for the CU space minor

Leading Global Air And Space Law Group Joins Reed Smith

New Horizons for Alexander Gerst

TIME AND SPACE
Study proves viability of quantum satellite communications

Indian Space Agency to Work on Electric Propulsion for Large Satellites

Saudi deal for counterfire radars approved by U.S. State Department

Mitsubishi Electric Completes New Satellite Component Production Facility

TIME AND SPACE
Discovery reveals planet almost as hot as the Sun

A planet hotter than most stars

Hubble's tale of 2 exoplanets - Nature vs nurture

Astronomers discover alien world hotter than most stars

TIME AND SPACE
A whole new Jupiter with first science results from Juno

First results from Juno show cyclones and massive magnetism

Jupiters complex transient auroras

NASA's Juno probe forces 'rethink' on Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.