Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
Quantum computer as detector shows space is not squeezed
by Staff Writers
Berkeley CA (SPX) Jan 29, 2015


As the Earth rotates every 24 hours, the orientation of the ions in the quantum computer/detector changes with respect to the Sun's rest frame. If space were squeezed in one direction and not another, the energies of the electrons in the ions would have shifted with a 12-hour period. Image courtesy Hartmut Haeffner, UC Berkeley. For a larger version of this image please go here.

Ever since Einstein proposed his special theory of relativity in 1905, physics and cosmology have been based on the assumption that space looks the same in all directions - that it's not squeezed in one direction relative to another.

A new experiment by University of California, Berkeley, physicists used partially entangled atoms - identical to the qubits in a quantum computer - to demonstrate more precisely than ever before that this is true, to one part in a billion billion.

The classic experiment that inspired Albert Einstein was performed in Cleveland by Albert Michelson and Edward Morley in 1887 and disproved the existence of an "ether" permeating space through which light was thought to move like a wave through water. What it also proved, said Hartmut Haffner, a UC Berkeley assistant professor of physics, is that space is isotropic and that light travels at the same speed up, down and sideways.

"Michelson and Morley proved that space is not squeezed," Haffner said. "This isotropy is fundamental to all physics, including the Standard Model of physics. If you take away isotropy, the whole Standard Model will collapse. That is why people are interested in testing this."

The Standard Model of particle physics describes how all fundamental particles interact, and requires that all particles and fields be invariant under Lorentz transformations, and in particular that they behave the same no matter what direction they move.

Haffner and his team conducted an experiment analogous to the Michelson-Morley experiment, but with electrons instead of photons of light. In a vacuum chamber he and his colleagues isolated two calcium ions, partially entangled them as in a quantum computer, and then monitored the electron energies in the ions as Earth rotated over 24 hours.

If space were squeezed in one or more directions, the energy of the electrons would change with a 12-hour period. It didn't, showing that space is in fact isotropic to one part in a billion billion (1018), 100 times better than previous experiments involving electrons, and five times better than experiments like Michelson and Morley's that used light.

The results disprove at least one theory that extends the Standard Model by assuming some anisotropy of space, he said.

Haffner and his colleagues, including former graduate student Thaned Pruttivarasin, now at the Quantum Metrology Laboratory in Saitama, Japan, will report their findings in the Jan. 29 issue of the journal Nature.

Entangled qubits
Haffner came up with the idea of using entangled ions to test the isotropy of space while building quantum computers, which involve using ionized atoms as quantum bits, or qubits, entangling their electron wave functions, and forcing them to evolve to do calculations not possible with today's digital computers. It occurred to him that two entangled qubits could serve as sensitive detectors of slight disturbances in space.

"I wanted to do the experiment because I thought it was elegant and that it would be a cool thing to apply our quantum computers to a completely different field of physics," he said. "But I didn't think we would be competitive with experiments being performed by people working in this field. That was completely out of the blue."

He hopes to make more sensitive quantum computer detectors using other ions, such as ytterbium, to gain another 10,000-fold increase in the precision measurement of Lorentz symmetry. He is also exploring with colleagues future experiments to detect the spatial distortions caused by the effects of dark matter particles, which are a complete mystery despite comprising 27 percent of the mass of the universe.

"For the first time we have used tools from quantum information to perform a test of fundamental symmetries, that is, we engineered a quantum state which is immune to the prevalent noise but sensitive to the Lorentz-violating effects," Haffner said. "We were surprised the experiment just worked, and now we have a fantastic new method at hand which can be used to make very precise measurements of perturbations of space."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of California - Berkeley
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
Exotic, gigantic molecules fit inside each other like Russian nesting dolls
Chicago IL (SPX) Jan 28, 2015
University of Chicago scientists have experimentally observed for the first time a phenomenon in ultracold, three-atom molecules predicted by Russian theoretical physicsist Vitaly Efimov in 1970. In this quantum phenomenon, called geometric scaling, the triatomic molecules fit inside one another like an infinitely large set of Russian nesting dolls. "This is a new rule in chemistry that mo ... read more


TIME AND SPACE
Service Module of Chinese Probe Enters Lunar Orbit

Service module of China's lunar orbiter enters 127-minute orbit

Chinese spacecraft to return to moon's orbit

Russian Company Proposes to Build Lunar Base

TIME AND SPACE
Gully patterns document Martian climate cycles

The two faces of Mars

Several Drives This Week Put Opportunity Near Marathon Distance

Helicopter Could be 'Scout' for Mars Rovers

TIME AND SPACE
NASA, Boeing, SpaceX Outline Objectives to ISS Flights

Boeing will be first to carry US astronauts to space

Japanese businessman set to resume space tourist training

Sailing spacecraft LightSail to harness power of solar wind

TIME AND SPACE
More Astronauts for China

China launches the FY-2 08 meteorological satellite successfully

China's Long March puts satellite in orbit on 200th launch

Countdown to China's new space programs begins

TIME AND SPACE
NASA's CATS Installed on ISS by Robotic Handoff

Roscosmos, NASA Still Planning on Sending Men Into Space

Russian Cargo Spacecraft to Supply ISS With Black Caviar

Astronauts' year-long mission will test limits

TIME AND SPACE
SpaceX releases animation of heavy-lift Falcon rocket

NASA TV Coverage Reset for Launch of Newest Earth-Observing Mission

Japan delays launch of satellite due to weather

British Satellite to Be Launched by Russian Proton-M Carrier Rocket

TIME AND SPACE
Dawn ahead!

Habitable Evaporated Cores

Smaller Gas Giants Could Support Life

Will NASA's TESS Spacecraft Revolutionize Exoplanet Hunting?

TIME AND SPACE
Vanguard Delivers Advanced EHF Bus Structure Assembly

Graphene edges can be tailor-made

The laser pulse that gets shorter all by itself

Eyeglasses that turn into sunglasses - at your command




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.