. 24/7 Space News .
TECH SPACE
Powerful new imaging method reveals in detail how particles move in solution
by Staff Writers
Buffalo NY (SPX) Mar 06, 2018

Thanks to the new method, this image of a biomolecule reveals its intricate internal structure in orange, red and yellow. Until now, scientists would only have been able to see the blue outline.

New research published in Nature Methods will dramatically improve how scientists "see inside" molecular structures in solution, allowing for much more precise ways to image data in various fields, from astronomy to drug discovery.

The new method will allow for the visualization of many more biological molecules, providing critical information about what is inside molecules to scientists who currently can only access their outer shape or envelope. Such information could be a major boost to studies of viruses, for example.

"With existing techniques, you can only see the outline of the virus," said author Thomas D. Grant, PhD, research assistant professor in the Department of Structural Biology in the Jacobs School of Medicine and Biomedical Sciences at the University at Buffalo and the Department of Materials, Design and Innovation in the UB School of Engineering and Applied Sciences and Hauptman-Woodward Medical Research Institute. "This new method allows us to see inside the virus molecule to understand how the genetic information is arranged, potentially giving new insight into how the virus injects this genetic information into its host."

Grant is the sole author of the paper, a rarity among papers published in this journal. He is a scientist with BioXFEL (Biology with X-ray Free Electron Lasers), a National Science Foundation Science and Technology Center composed of eight U.S. research universities that is headquartered at UB. Its mission is to address fundamental questions in biology at the molecular level using cutting-edge techniques, including X-ray laser science.

Solving the phase problem
Grant's method has solved the phase problem for a particular molecular determination technique called solution scattering. The phase problem is where critical information about the phase of a molecule is lost during the experimental process of making a physical measurement.

He explained that most molecular structures today are solved using X-ray crystallography, where the structures scatter intense X-rays in patterns consisting of hundreds of thousands of unique pieces of information, which are used to ultimately reveal the structure at high-resolution.

"The problem is that more than 75 percent of molecular structures do not readily form the ordered crystals that diffract well," explained Grant. "That means many molecules are difficult to visualize in three dimensions."

In addition, he said, biological molecules can exhibit dynamic motions that have an impact on how they function but those motions are missing when structures crystallize, resulting in the loss of important biological information.

One way around this obstacle is to use a technique called solution scattering in which X-rays scatter off of molecules floating in solution instead of arranged in a crystal.

"Solution scattering allows the molecules to move dynamically in their natural states, enabling the visualization of large-scale conformational dynamics important for biological function," said Grant.

"However, as the molecules tumble in solution, they scatter the X-rays in many different orientations, losing most of the information, typically yielding only 10 to 20 unique pieces of data." Until now, such little information only yielded low-resolution outlines of the particle shape.

Grant developed a new algorithm that enables reconstructing the three-dimensional electron density of a molecule, similar to a 3-D reconstruction of the brain produced by a CT scan. However, his algorithm does this using only the one-dimensional data from solution scattering experiments.

Like seeing facial features instead of just a silhouette
"For the first time, this enables us to 'see inside' these molecules floating in solution to understand the internal density variations instead of only seeing the outer edges or 'envelope' of the particle shape," Grant said. "Like being able to see all of a person's facial features instead of just the silhouette of their face, this added information will enable researchers to better understand molecular structures in solution."

He developed the new method by expanding upon a well-known mathematical technique called "iterative phase retrieval." This is a computational technique that provides a way to solve the phase problem.

Grant explained: "The phase problem is akin to having a camera that accurately records all the intensities of each pixel, but scrambles where those pixels are, based on a complex mathematical equation. So you're left with a useless image of scrambled pixels."

Scientists, he said, have typically worked to decode that mathematical equation by changing the image a little bit to make sure it looks approximately as they expect. For example, in a landscape photo, the blue pixels depicting the sky should naturally be at the top.

Solving the phase problem is like decoding that equation, Grant continued, and being able to place all the pixels where they're supposed to be, reconstructing the original image.

"However, this process changes some of the intensities, so you correct them based on the original scrambled image you have," he said. "This method cycles through this process iteratively, gradually improving the phases with each cycle, ultimately retrieving the final phases, solving the phase problem and reconstructing the desired image."

Grant's method, called "iterative structure factor retrieval," allows scientists to reconstruct not only the three-dimensional phases but also the three-dimensional intensities which are lost in solution scattering experiments as the molecules tumble randomly in solution.

"This is the first demonstration of the ability to reconstruct three-dimensional objects from one-dimensional experimental data and it will likely have a large impact in related imaging fields," he said.
Related Links
University at Buffalo
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
Majorana runners go long range: New topological phases of matter unveiled
Madrid, Spain (SPX) Mar 06, 2018
Researchers from Universidad Complutense de Madrid, MIT and Harvard University have discovered a mechanism that enhances the presence of Majorana particles at the edges of a topological superconductor, thanks to the presence of long-range magnetic interactions. Moreover, they have shown that it is possible to find new topological phases of matter by merging distant Majoranas into a new particle. This great achievement could have future applications for quantum technologies. In a recent paper publi ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Cosmonaut, two US astronauts return to Earth from ISS

ISS Expedition 54 crew land safely in Kazakhstan

Aerospace introduces new Senior Advisory Council for space policy

International team publishes roadmap to enhance radioresistance for space colonization

TECH SPACE
SLS Intertank loaded for shipment, structural testing

Arianespace Soyuz set to launch 4 more sats for SES O3b constellation

Space-X lobs Spanish military satellite into orbit

Millenium tapped for certification of Vulcan space launch systems

TECH SPACE
Curiosity tests a new way to drill on Mars

NASA InSight mission to Mars arrives at launch site

Atacama Desert study offers glimpse of what life on Mars could look like

Life in world's driest desert seen as sign of potential life on Mars

TECH SPACE
China speeds up research, commercialization of space shuttles

Long March rockets on ambitious mission in 2018

Chinese taikonauts maintain indomitable spirit in space exploration: senior officer

China launches first shared education satellite

TECH SPACE
Lockheed Martin Completes Foundation for Satellite Factory of the Future

Lockheed Martin Completes Assembly on Arabsat's Newest Communications Satellite

Goonhilly goes deep space

Iridium Certus broadband readies for DOD wsers with COMSAT

TECH SPACE
Common bricks can be used to detect past presence of uranium, plutonium

Majorana runners go long range: New topological phases of matter unveiled

Latest updates from NASA on IMAGE Recovery

Radioactive cylinder found on Lebanon coast: authority

TECH SPACE
NASA finds a large amount of water in an exoplanet's atmosphere

When two species become one: New study examines 'speciation reversal'

Alien life in our Solar System? Study hints at Saturn's moon

When do aging brown dwarfs sweep the clouds away?

TECH SPACE
Chasing a stellar flash with assistance from GAIA

New Horizons captures record-breaking images in the Kuiper Belt

Europa and Other Planetary Bodies May Have Extremely Low-Density Surfaces

JUICE ground control gets green light to start development









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.