Subscribe free to our newsletters via your
. 24/7 Space News .




NANO TECH
Plantations of nanorods on carpets of graphene capture the Sun's energy
by Staff Writers
Warsaw, Poland (SPX) Jul 16, 2015


This is the microscopic image of the novel 3D photocatalytic material, designed by scientists from the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw, Poland, and the Fuzhou University, China. Image courtesy IPC PAS, Fuzhou University. For a larger version of this image please go here.

The Sun can be a better chemist, thanks to zinc oxide nanorod arrays grown on a graphene substrate and "decorated" with dots of cadmium sulphide. In the presence of solar radiation, this combination of zero and one-dimensional semiconductor structures with two-dimensional graphene is a great catalyst for many chemical reactions.

The innovative photocatalytic material has been developed by a group of scientists from the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw and Fuzhou University in China. It's a strange forest. Simple, uniformly distributed trunks grow from a flat surface, rising long nanometres upwards to where crowns of semiconductors greedily capture every ray of Sun.

That's the view seen through a microscope of the new photocatalytic material, developed by scientists from the Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS) in Warsaw, Poland, and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry at Fuzhou University, China.

The novel 3D material has been designed so that during the processing of solar energy the best collaboration is achieved between the dots of cadmium sulphide (so-called zero-dimensional structures), the nanorods of zinc oxide (1D structures), and graphene (2D structures).

The methods of converting light energy reaching the Earth from the Sun can be divided into two groups. In the photovoltaic group, photons are used for the direct generation of electrical energy. The photocatalytic approach is different: here radiation, both visible and ultraviolet, is used to activate chemical compounds and carry out reactions which store solar energy. In this manner it is possible to e.g. reduce CO2 to methanol, synthesize fuel or produce valuable organic intermediates for the chemical or pharmaceutical industry.

The principle of operation of the new, three-dimensional photocatalyst, developed by the group from the IPC PAS and the University of Fuzhou, is simple. When a photon with the appropriate energy falls on the semiconductor - zinc oxide ZnO or cadmium sulphide CdS - an electron-hole pair forms.

Under normal circumstances it would almost immediately recombine and the solar energy would be lost. However, in the new material electrons - released in both semiconductors as a result of interaction with the photons - quickly flow down along the nanorods to the graphene base, which is an excellent conductor.

Recombination can not occur and the electrons can be used to create new chemical bonds and thus to synthesize new compounds. The actual chemical reaction takes place on the surface of the graphene, previously coated with the organic compounds which are to be processed.

Zinc oxide only reacts with ultraviolet radiation, of which there is but a small percentage in sunlight. Therefore, researchers from the IPC PAS and Fuzhou University have also covered the nanorod forests with cadmium sulphide. This reacts primarily with visible light, of which there is approx. 10 times more than the ultraviolet - and this is the main supplier of electrons for the chemical reactions.

"Our photocatalytic material operates with a high yield. We usually add it to the compounds being processed in a ratio of about 1:10. After exposure to solar radiation within no more than half an hour we process 80% and sometimes even more than 90% of the substrates," stresses Prof. Yi-Jun Xu (FRSC) of Fuzhou University, where the majority of the experiments have been carried out by the research team led by him.

"The great advantage of our photocatalyst is the ease of its production," in turn notes Prof. Juan Carlos Colmenares of the IPC PAS.

"Graphene suitable for applications in photochemistry is now available without any greater problems and is not expensive. In turn, the process invented by us of coating graphene with plantations of zinc oxide nanorods, on which we subsequently deposit cadmium sulphide, is fast, efficient, takes place at a temperature just slightly higher than room temperature, at normal pressure, and does not require any sophisticated substrates."

For application on a broader scale it is important that the new photocatalyst is consumed slowly. The experiments carried out to date show that only after the sixth-seventh use does a slight decrease of about 10% in the yield of the reaction occur.

Skillfully used, the new 3D photocatalyst may significantly alter the course of chemical reactions. Its use, e.g. in the pharmaceutical industry, could reduce the number of stages of production of certain pharmacological compounds from a dozen to just a few.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Institute of Physical Chemistry of the Polish Academy of Sciences
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





NANO TECH
Nanowires highly 'anelastic'
Providence RI (SPX) Jul 14, 2015
Researchers from Brown University and North Carolina State University have found that nanowires made of zinc oxide are highly anelastic, meaning they return to shape slowly after being bent, rather that snapping right back. The findings, published in the journal Nature Nantechnology, add one more to the growing list of interesting properties found in nanoscale wires, tiny strands thousands of ti ... read more


NANO TECH
Russia to Land Space Vessel on Moon's Polar Region in 2019

Moon engulfed in permanent, lopsided dust cloud

Crashing comets may explain mysterious lunar swirls

Google Lunar X-Prize meets Yoda

NANO TECH
Opportunity Rover's 7th Mars Winter to Include New Study Area

Opportunity Gets Back to Work

NASA wants to send microbes to Mars to prepare for human habitation

Could This Become the First Mars Airplane

NANO TECH
US selects four astronauts for commercial flight

Docking Adapter Sets Stage for Commercial Crew Crew

Targeted LEDs could provide efficient lighting for plants grown in space

NASA Gears Up to Test Orion's Powerhouse

NANO TECH
Chinese earth station is for exclusively scientific and civilian purposes

Cooperation in satellite technology put Belgium, China to forefront

China set to bolster space, polar security

China's super "eye" to speed up space rendezvous

NANO TECH
'Jedi' astronauts say 'no fear' as they gear for ISS trip

Relief as Russian cargo ship docks at space station

Loss of SpaceX Cargo Resupply Mission No Threat to ISS Crew Security

Russia launches Soyuz Progress with supplies for ISS

NANO TECH
India to launch its heaviest commercial mission to date

Final payload integration begins for next Ariane 5 launch

Licensed commercial spaceport to be built in Houston, Texas

More Fidelity for SpaceX In-Flight Abort Reduces Risk

NANO TECH
Bricks to build an Earth found in every planetary system

Observing the birth of a planet

Precise ages of largest number of stars hosting planets ever measured

Can Planets Be Rejuvenated Around Dead Stars?

NANO TECH
Lower cost ultrasound degassing now possible in processing aluminum

New computer program may fix billion-dollar bit rot problem

Brownian motion phenomena of self-powered liquid metal motors

Omnidirectional free space wireless charging developed




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.